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A B S T R A C T 

Brain-computer interface (BCI-MI)-based wheelchair control is, in principle, an appropriate method for 

completely paralyzed people with a healthy brain. In a BCI-based wheelchair control system, pattern 

recognition in terms of preprocessing, feature extraction, and classification plays a significant role in 

avoiding recognition errors, which can lead to the initiation of the wrong command that will put the 

user in unsafe condition. Therefore, this research's goal is to create a time-domain generic pattern 

recognition model (GPRM) of two-class EEG-MI signals for use in a wheelchair control system. 

This GPRM has the advantage of having a model that is applicable to unknown subjects, not just one. 

This GPRM has been developed, evaluated, and validated by utilizing two datasets, namely, the BCI 

Competition IV and the Emotive EPOC datasets. Initially, fifteen-time windows were investigated with 

seven machine learning methods to determine the optimal time window as well as the best classification 

method with strong generalizability. Evidently, the experimental results of this study revealed that the 

duration of the EEG-MI signal in the range of 4–6 seconds (4–6 s) has a high impact on the classification 

accuracy while extracting the signal features using five statistical methods. Additionally, the results 

demonstrate a one-second latency after each command cue when using the eight-second EEG-MI signal 

that the Graz protocol used in this study. This one-second latency is inevitable because it is practically 

impossible for the subjects to imagine their MI hand movement instantly. Therefore, at least one second 

is required for subjects to prepare to initiate their motor imagery hand movement. Practically, the five 

statistical methods are efficient and viable for decoding the EEG-MI signal in the time domain. 

Evidently, the GPRM model based on the LR classifier showed its ability to achieve an impressive 

classification accuracy of 90%, which was validated on the Emotive EPOC dataset. The GPRM 

developed in this study is highly adaptable and recommended for deployment in real-time EEG-MI-

based wheelchair control systems. 
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1 INTRODUCTION 

The use of a brain-controlled wheelchair (BCW) for paralyzed patients has attracted widespread attention due to its 

flexibility BCWs are suitable, relatively inexpensive, highly mobile, and easy to set up[1]. The BCW has been designed 

using different types of EEG signals, such as motor imagery (MI), P300 -evoked potentials, steady-state visual evoked 

potentials (SSVEPs), and some hybrid signals[2-4]. However, the efficiency of using EEG-based SSEPs and P300 has 

several limitations for patients with severe motor disabilities [5-10]. Additionally, people with disabilities easily become 

fatigued [8, 11-13]. Therefore, such a type of EEG signal is inappropriate for wheelchair control. MI is considered effective 

for paralyzed people because it does not require any voluntary muscle movement [14-16]. In wheelchair navigation with 

low-level control commands (e.g., forward, backward, or stop and turn left and right), EEG-based MI will be of particular 

interest [9, 17]. EEG-based MI BCI identifies brain patterns to forecast the user's intention during a specific movement 

imagination task [18, 19] or emotion [20, 21]. 

Principally, MI pattern recognition schemes include raw MI EEG signal preprocessing feature extraction [22], and 

classification [23, 24]. The MI pattern recognition model correlates the effectiveness of intelligent processes such as feature 

extraction and classification with the effectiveness of the preprocessing (segmentation) of the EEG signal[25, 26]. 

Feature extraction is another critical step in MI pattern recognition. It represents a distinguishing property, an identifiable 

measurement, and a functional component obtained from a section of a pattern [27-29]. Common EEG features include 

those in the time domain, frequency domain, time-frequency domain, and spatial domain [23]. 
In addition, statistical features can be used to represent the characteristics of the original EEG-MI signal without 

redundancy to reduce the dimensionality of the feature vectors [30, 31]. The classification process is very useful for 

analyzing brain pattern characteristics and interpreting EEG signal features represented in a high-dimensional feature 

space[32]. Numerous machine learning algorithms  the BCW literature, including support vector machines (SVMs)[2, 14, 

33-46], linear discriminant analysis (LDA) [47-57], decision trees (DTs) [5, 6, 58, 59], K-nearest neighbors (KNNs) [60, 

61], naive bases (NBs)[43, 60, 62, 63], logistic regression (LR) [1, 64], and artificial neural networks (ANNs) [1, 45, 60, 

61, 64-71]. Moreover, various studies have proposed hybrid learning models [72, 73], novel machine learning methods 

[74-78], and smart applications[79, 80]. 

Currently, designing powerful pattern recognition methods with strong generalizability is one of the vital issues in the field 

of BCI-based applications[81, 82]. The literature has established several different time courses as optimal, including two 

seconds in the frequency domain[46] and seven seconds in the time-frequency domain [83]. To carry out the segmentation 

processes in the BCI-based EEG-MI signal, however, none of the studies identified the time window with the most robust 

MI signal features for generalization in the time domain using five statistical methods. Furthermore, no studies in the 

literature have identified a classifier with strong generalization capabilities suitable for deployment in a pattern recognition 

model. 

Therefore, this study aimed to develop a time-domain generic pattern recognition model (GPRM) for two-class EEG-MI 

signal-based wheelchair steering control. Three vital components of the generalization capability of such GPRMs have 

been considered, namely preprocessing, feature extraction, and classification. In the preprocessing of the EEG-MI signal, 

a fourth-order Butterworth bandpass filter was used to extract signals with frequencies ranging from 8 to 30 Hz. While 

excluding time windows, not including feature components, in the segmentation process, fifteen-time windows were 

studied to find the optimal time window. Particularly, feature extraction using statistical methods that were used in [31] 

was used in this study for the feature extraction process to extract feature components from the EEG-MI signal without 

redundancy. Primarily, for classifying the two-class EEG-MI signal as either left or right, seven classification algorithms, 

namely, LDA, SVM, LR, KNN, DT, MLP, and NB, which have been mostly reported in the literature, were adopted, 

evaluated, and validated to find the best algorithm with strong generalization power. The remainder of this paper is 

organized as follows: Section 2 describes the research methodology of this study. In Sections 3 and 4, the results and 

discussion of GPRM development, evaluation, and validation using two datasets are described. Finally, the conclusions of 

this study are described in Section 5. 
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Fig. 1. Research Methodology of the Time Domain GPRM 
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2 METHODOLOGY 

The following subsections describe the methodological framework of the GPRM for two classes of EEG-MI-based 

wheelchair controls developed, evaluated, and validated in this study. They provide more details about the methods and 

materials used, including the EEG-MI signal dataset, preprocessing, feature extraction, and classification. Figure 1 depicts 

the research methodology used for this research. 

 

2.1 Dataset-I 
 

Developers from the Graz University collected a dataset, known as dataset IIb, during the IV BCI competition. This dataset 

contains EEG signals acquired from three channels, namely, C3, Cz, and C4, from nine subjects performing two motor 

imagery hand movement tasks with their left and right hands. The dataset contains 160 trials for each participant. Clearly, 

the lack of a large dataset to develop, evaluate, and validate a GPRM to address the complexity of subjects' specific brain 

signals, such as inter- and intrasubject differences, was a significant obstacle. Therefore, these datasets of all nine subjects 

involving different brain complexities were combined (union) to form a large generic dataset. This dataset illustrates the 

timing scheme of the recording techniques used. 

 

2.2 Dataset-II 
 

The dataset-II had three channels of electroencephalogram (EEG) data (C3, Cz, and C4) that recorded signals for two 

different motor imagery tasks: movements performed with the left and right hands. They gathered the data from a group of 

nine different individuals at a sample frequency of 250 Hz. They obtained an electroencephalogram (EEG) from an 

individual who sat in an armchair and stared on a flat screen for 160 trials. There were two separate recording sessions: one 

for training with no feedback and the other for evaluation with positive feedback. During the first two sessions, the 

participants received a concise auditory signal in the form of a warning tone. The subjects conducted four seconds of motor-

imaging exercises in response to this cue. 

This task involved participating in a cognitive simulation of a specific movement guided by an auditory signal in the form 

of a pointing arrow displayed on a screen devoid of physical components. Over the course of the following three sessions, 

the participants received comprehensive guidance on modifying the gray smiley feedback located at the center of the 

monitor. After a brief auditory signal, the system instructed individuals to move the feedback left or right. Four seconds 

passed before the smiling emoticon transmitted the feedback. The smiling face turns green while it is heading in the right 

direction, but turns red when it is going the wrong way. As shown in Figure 2: 

2.3 Preprocessing 
 

One of the three essential processes for developing an EEG-MI pattern recognition model for wheelchair steering control 

is the preprocessing of the raw EEG signal. Therefore, this study carried out preprocessing with two main processes, 

namely, filtering and segmentation. The aim of the filtering process was to remove unwanted artifacts from the EEG-MI 

signal and improve the signal-to-noise ratio. Noise from various sources, including body movements, eye blinks, and facial 

muscle movements, along with artifacts from the surrounding environment, such as electromagnetic fields generated by 

electrical devices, inevitably contaminates the EEG-MI signal. Therefore, it was vital to filter the EEG-MI signal to remove 

such noise and artifacts. In this study, we specifically used the fourth-order Butterworth filter to filter the EEG-MI signal, 

removing contaminated signals from various noise sources and detecting rhythms within the 8 Hz and 30 Hz range, as the 

EEG-MI method depends on the alpha rhythms (8–13 Hz) and beta rhythms (14–30 Hz) of the sensorimotor cortex. 

On the other hand, they carried out a segmentation process to eliminate unwanted time windows from the EEG-MI signal 

while excluding the feature components, thereby enhancing the classification accuracy. Therefore, we employed the 

segmentation process to enhance the classification accuracy by eliminating periods and feature components from the EEG-

MI signal. Figure 2 presents the preprocessing procedure for this research. 
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Fig. 2. Preprocessing Steps of the EEG-MI Signals 

Each subject may exhibit varying motor-imagery signal power at different times during the trial, as their brain complexities 

may cause them to start or end the motor-imagery task at slightly different time intervals. Therefore, it is essential to 

perform feature extraction and classification for brain waves by segmenting motor-imagery signals into different time 

frames or windows. In this study, five different time-segment groups were used to study the different time windows or time 

frames based on one, two, three, four, and five seconds of the EEG-MI signal, as shown in Figure 3. The reason for these 

divisions was to make it possible to examine the different durations of the EEG-MI signal, which could help provide greater 

insight into the importance of motor-imagery feature components. In addition, the optimal time window of EEG- Mis 

containing the maximum number of feature components would help develop real-time hardware for applications based on 

the embedded system, which could be generalized to any two classes of the EEG-MI system using the eight-second Graz 

recording protocol. 

 

 

Fig. 3. EEG Signal Segmentation Groups 
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2.4 Time domain Feature Extraction 
 

In general, biomedical engineering research uses features in the time domain extensively. The widespread use of time-

domain features in signal classification is due to their simplicity in computation and rapid implementation in real-world 

applications. Additionally, they do not need any transformation because such features can be calculated based on the raw 

EEG signal. Nonetheless, the nonstationary property of the EEG signal, which changes in statistical properties over time, 

poses a major problem in the extraction of features in the time domain, given that time-domain features assume data to be 

a stationary signal. Compared with frequency-domain and time-frequency domain features, time-domain features have 

gained widespread use due to their superior signal classification performance in low-noise environments and their lower 

computational complexity. As a result, this study used the five statistical features in the extraction of temporal information 

directly from the EEG signal, as well as to build and reduce the dimensionality of the feature vectors[31], namely, the 

maximum, minimum, median, mean, and standard deviation. These features represent the characteristics of the original 

EEG-MI signal without redundancy. Such a feature vector was used to handle the extracted time-domain EEG-MI signal 

features, which were then fed into the next stage of the classification process. 

 

Classification 

In particular, classification methods play a significant role in understanding and distinguishing brain signal features 

represented in a high-dimensional feature space. In addition, choosing the appropriate classification method would increase 

the classification accuracy of the BCI-based wheelchair control system. Specifically, this study aimed to develop a GPRM 

for two-class EEG-MI-based wheelchair steering control. Such a GPRM offers the advantage of having a model that is 

applicable to unknown subjects. However, if a subject-specific model is developed, it will only fit one subject. Practically, 

all the papers listed employ seven machine learning methods for developing the GPRM. Various strategies have been 

implemented to identify the most effective single classifiers and hybrid classifiers. The literature on EEG-based wheelchair 

control has reported classification methods such as LDA, SVM, LR, KNN, DT, MLP, and NB. 

 

To date, however, none of these studies have focused on the best classification method for EEG-MI signals consisting of 

two classes using statistical feature extraction in the time domain. The GPRM was assessed in three stages, namely, 

development, evaluation, and validation. Specifically, the best two single classifiers from the seven classification methods 

that had been developed were combined to produce the hybrid classifier using the voting technique. The GPRM-based 

single and hybrid classifiers were evaluated and validated using a single subject dataset individually acquired from the BCI 

Competition IV/2b and Emotive EPOC datasets. To evaluate the performance of the entire input dataset, it was portioned 

into subsets using k-fold cross-validation. In this technique, the sample data are divided into k subsets, and out of k subsets, 

k-1 subsets are used for training the GPRM, while the remaining subset is used for testing the accuracy. This study uses 

10-fold cross-validation for evaluating all the PRMs based on single and hybrid classifiers over generic and single-subject 

datasets. 

 

3 RESULTS 

In this study, we conducted six experiments primarily to develop, evaluate, and validate a time domain-based GPRM for 

EEG-MI-based wheelchair steering control. Initially, we implemented the first three experiments for both development and 

evaluation purposes. We conducted the last three experiments solely for the validation process. Experiments 1 and 2 were 

conducted on the developed generic dataset to evaluate the recognition power of each model while being applied to a large 

dataset with different brain signal complexities. The purpose of the former experiment was to examine five groups of time 

windows and test them with seven machines to find the optimal time window as well as the best classifier. The results of 

Experiment-1 showed that the two-second time window achieved the highest classification accuracy compared to the other 

time windows (namely, one-, three-, four-, and five-second time windows), as shown in Figure 4. Table 1 shows the 

classification accuracies of the time windows and the highest accuracy achieved by each time window. The results indicate 

that a two-second (4–6) window achieved the highest classification accuracy. Examining such accuracy based on the 

different classifiers revealed that LR and LDA were the classifiers that achieved the highest classification accuracy of 62% 

at the time interval of 4-6 s, which was the highest percentage compared to those of the other classifiers. 
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Fig. 4. Classification Accuracies Based on Time Segments 

 
 

Table I. ACCURACIES OF GPRM USING SINGLE CLASSIFIERS WITH DIFFERENT TIME SEGMENTS 
 

Time-Segment (s) Classification Accuracy of GPRM (with single classifier) (%) 

One Seconds LR NB LDA SVM DT MLP KNN 

3-------4 59 51 59 53 54 56 54 

4-------5 59 55 59 58 56 60 56 

5-------6 59 55 59 58 56 58 56 

6-------7 58 52 58 58 52 57 54 

7-------8 54 51 55 53 52 53 50 

Two Seconds        

3-------5 58 49 58 57 54 58 56 

4-------6 62 57 62 60 56 60 56 

5-------7 57 53 58 58 52 58 57 

6-------8 54 52 54 55 51 56 56 

Three Seconds        

3-------6 58 51 58 56 54 60 53 

4-------7 61 55 60 59 57 61 59 

5-------8 57 51 56 56 52 55 56 

Four Seconds        

3-------7 58 55 58 58 54 58 55 

4-------8 57 53 57 57 55 57 58 

Five Seconds        

3-------8 55 51 55 54 53 56 56 

 

TABLE II. CLASSIFICATION ACCURACIES USING SINGLE AND HYBRID CLASSIFIERS BASED ON A SINGLE-SUBJECT DATASET 
 

Dataset-I Classification Accuracy of GPRM (with single and hybrid classifier) (%) 

Subjects LR LDA LR-LDA 

S1 71 71 73 

S2 68 69 69 

S3 74 75 75 

S4 88 88 87 

S5 57 59 59 

S6 56 51 52 

S7 86 88 86 

S8 84 83 83 

S9 73 75 73 

Mean 73 73.2 73 

STD 11.6 12.5 11.8 
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In particular, the results of experiment- 2 using the hybrid classifier (LR-LDA) yielded a classification accuracy of 62%. 

Specifically, Experiment- 3 was conducted to evaluate the generalization capability of the time-domain EEG-MI GPRM 

developed in Experiment- 1 and Experiment- 2, which were based on single classifiers (LR and LDA) and hybrid classifiers 

(LR-LDA), respectively, in distinguishing two mental MI tasks (right and left tasks). In this experiment, the GPRM based 

on the above classifiers was evaluated on a single subject belonging to the BCI competition dataset (the training part) using 

a time window of 4–6 s, which had been shown to have the highest classification accuracy in Experiment 1. Moreover, this 

experiment employed the identical feature-extraction procedure from Experiment- 1 and Experiment- 2, feeding feature 

vectors to the single classifiers (LR and LDA) and the hybrid classifiers (LR-LDA), respectively. 

The classification accuracies in Experiment- 3 were also examined, and it was found that the EEG-MI GPRM models using 

the single classifier LDA were 73.2% accurate. The single classifier LR and the hybrid classifiers (LR-LDA) were both 

73% accurate. Two types of EEG-MI GPRM models—one with single classifiers and one with hybrid classifiers—achieve 

approximately the same average accuracy. However, the LR classifier had a lower standard deviation (11.6) than the 12.5 

and 11.8 for the LDA and LR-LDA classifiers, respectively. Therefore, the time-domain EEG-MI GPRM model based on 

the single classifier (LR) was the most accurate model, with the highest classification accuracy, using a time window of 4–

6 s. Table 2 summarizes the results of Experiment 3's statistical analysis. 

 

TABLE III. CLASSIFICATION ACCURACIES FOR GPRM VALIDATION USING THE BCI COMPETITION SINGLE SUBJECT DATASET 
 

Dataset-II Classification accuracy of GPRM (with single and hybrid classifier) (%) 

Subjects LR LDA LR-LDA 

S1 61 65 62 

S2 58 54 56 

S3 53 52 53 

S4 91 93 91 

S5 65 60 65 

S6 60 58 56 

S7 71 71 69 

S8 93 95 94 

S9 77 78 78 

Mean 69.8 69.5 69.3 

STD 14.3 16 15.1 

 
 

Essentially, experiment 4's main objective is to validate such GPRMs in terms of their ability to handle inter- and 

intrasubject differences in brain signals. They conducted this experiment on the second generic dataset, which we acquired 

from the validation part of the BCI Competition dataset IV/2b. The results of this experiment showed that the accuracy 

percentages of the GPRM based on LR and LDA were 69% and 66%, respectively. The accuracy percentage for the LR-

LDA model was 67%. In experiment 5, they clearly validated such GPRM models using a single-subject dataset, 

specifically the BCI Competition IV dataset IIb (validation part). Table 3 displays the results of the GPRM validation 

involving the nine subjects. As shown, all the GPRMs based on the selected single and hybrid classifiers attained mean 

classification accuracies of 69.8%, 69.5%, and 69.3% for LR, LDA, and LR-LDA, respectively. 

Furthermore, the standard deviation of the LR classifier was 14.3, which was smaller than those of the LDA and LR-LDA 

classifiers, which were 16 and 15.1, respectively. Finally, the goal of experiment 6 is to test these GPRMs to determine 

how well they can handle the EEG-MI dataset that the Emotion EPOC EEG device collected. Evidently, the results showed 

that the LR-based GPRM and LDA-based GPRM achieved the highest and lowest classification accuracies, with mean 

percentages of 90.2% and 77%, respectively. In contrast, the GPRM based on LR-LDA attained a mean percentage of 

classification accuracy of 84%, somewhat lying in the middle of the above mean percentages. Furthermore, the standard 

deviations of the LR- and LDA-based GPRMs (whose standard deviations were 9.2 and 9.1, respectively) were lower than 

those of the LR-LDA-based model (whose standard deviation was 10.3). 
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TABLE IV. CLASSIFICATION ACCURACIES OF GPRM VALIDATION USING THE EMOTIVE EPOC SINGLE-SUBJECT DATASET 
 

Emotive Classification Accuracy (with single and hybrid classifiers) (%) 

Subjects LR LDA LR-LDA 

S1 77 66 71 

S2 95 75 89 

S3 98 88 95 

S4 91 79 81 

Average 90.2 77 84 

STD 9.2 9.1 10.3 

 

 

4 DISCUSSION 

This section primarily covers the six experiments conducted to develop, evaluate, and validate the time domain-based 

GPRM for EEG-MI-based wheelchair steering control. In experiment 1, the results revealed that there was a one-second 

latency after each command cue, and the maximum motor-imagery feature components emerged after one second of each 

cue, which lasted for two seconds. This delay was inevitable because it was practically impossible for the subjects to 

imagine their MI movement instantly. As a result, they needed at least one second to initiate the EEG-MI mental 

movements. This experiment also showed that the LDA and LR classifiers for the EEG-MI GPRM in the time domain are 

better at generalization than other classifiers in regard to working with a large dataset. Overall, the research findings suggest 

that the most critical time window or time interval for task classification is the two-second (4–6 s) time window. 

Particularly, the comparison of Experiment-1 and Experiment-2's findings in the time domain revealed that both the single 

classifier and the hybrid classifier achieved similar performance based on the two-second (4–6 s) time window. This finding 

suggests that both classifiers have the same classification capability for distinguishing the characteristics of the EEG-MI 

signal features. Therefore, it can be reasonably argued that both single and hybrid classifiers have the same ability to 

generalize large datasets, making them suitable for use in wheelchair steering control based on the EEG-MI GPRM. 

In Experiment- 3, the average accuracy of the EEG-MI GPRM obtained using single classifiers and hybrid classifiers was 

approximately the same. However, the LR classifier had a lower standard deviation than the LDA and LR-LDA classifiers. 

Therefore, the time-domain EEG-MI GPRM model based on the single classifier (LR) was the most accurate model, with 

the highest classification accuracy, using a time window of 4–6 s. It is possible that the LR classifier, which has a lower 

standard deviation, would be able to address the complex brain signals of the subjects more consistently and have a better 

ability to generalize than the LDA and LR-LDA classifiers. Basically, looking at the development results from Experiment-

1 and Experiment-4 showed that both single and hybrid classifiers did about the same in the GPRM development over a 

two-second period of time (4–6 s). However, for the validation process, the single and hybrid classifiers achieved different 

performances. Specifically, the LR-based GPRM attained the highest classification accuracy compared to the models based 

on LDA and LR-LDA. In addition, the classification accuracy of the LR classifier was 7% higher than that of the classifier 

described in Experiment 1. This interesting finding, based on different generic datasets of the same subjects, suggested that 

LR can distinguish EEG-MI signal features in the time domain more accurately than can LDA and LR-LDA. Therefore, 

we deem the LR classifier to have better generalization capability when dealing with different datasets of the same subjects, 

making it the optimal classifier for EEG-MI GPRM-based wheelchair steering control. Additionally, comparing the results 

of Experiment-5 to the results of Experiment-3, the GPRM models based on LR, LDA, and LR-LDA lost as much as 4% 

of their ability to correctly classify things. Again, the LR standard deviation was relatively lower than that of LDA and LR-

LDA. The results show that the LR-based EEG-MI GPRM is more consistent and accurate in the time domain than are the 

models based on the LDA and LR-LDA classifiers. It can also handle more complex brain signals from different subjects 

better. As shown in Table 4, the GPRM models that used the Emotion EPOC EEG-MI dataset in Experiment-6 were better 

at classifying people than the same models that used the BCI Competition dataset (see Experiments-3 and 5 for results). 

The collective findings strongly suggest that the primary components of the time-domain GPRM, particularly the LR-based 

GPRM (developed and validated using five different datasets), are best suited for real-time disability applications, such as 

the Emotive EPOC EEG device. 
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5. CONCLUSION 

This research essentially aims to develop a time-domain GPRM of a two-class EEG-MI signal for use in a wheelchair 

control system. This GPRM consists of three crucial steps, namely, preprocessing, feature extraction, and classification. 

The experiments clearly showed that there was a one-second delay after each command cue when the eight-second EEG-

MI signal of the Graz protocol was used. Additionally, the results show that the EEG-MI feature components last for two 

seconds after the one-second latency. This one-second latency makes it practically impossible for the subjects to imagine 

their MI hand movement immediately. Therefore, at least one second is required for subjects to prepare to initiate their 

motor imagery hand movement. In addition, the duration of the EEG-MI signal in the range of 4–6s (4–6 s) has strong 

impact on the classification accuracy when the signal features are extracted via five statistical methods. Interestingly, 

replacing the eight-second signal with a short signal lasting between 4 and 6s (4–6 s) will make computations easier than 

using the whole signal. This could make it easier to use the hardware in the EEG-MI-based wheelchair control system. The 

five statistical methods demonstrated practical efficiency and viability in decoding the EEG-MI signal within the time 

domain. Evidently, the GPRM model, based on the LR classifier, demonstrated its generalization capability by achieving 

impressive classification accuracy percentages of 90.2% during validation on the Emotive EPOC dataset. The findings of 

this study indicate that the developed GPRM is highly adaptable, and we recommend its deployment in real-time EEG-MI-

based wheelchair control systems. Additionally, other BCI-based disability applications, such as prosthetic control, robotic 

arm control, and smart home appliance control, can utilize this GPRM. 

 

Conflicts of interest 

The author's disclosure statement confirms the absence of any conflicts of interest. 

Funding 

The author's paper does not provide any information on grants, sponsorships, or funding applications related to the research. 

Acknowledgments 

The author acknowledges the support and resources provided by the institution in facilitating the execution of this study. 

 

References 

 

[1] R. H. Abiyev, N. Akkaya, E. Aytac, I. Günsel, and A. Çağman, "Brain-Computer Interface for Control of 

Wheelchair Using Fuzzy Neural Networks," BioMed research international, vol. 2016, 2016. 

[2] J. Li et al., "Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control 

with multi-degree of freedom," International journal of neural systems, vol. 24, no. 04, p. 1450014, 2014. 

[3] A. A. Rasha, Z. T. Al-Qaysi, M.A.Ahmed, and M. S. Mahmood, "Hybrid Model for Motor Imagery Biometric 

Identification," Iraqi Journal For Computer Science and Mathematics, vol. 5, no. 1, pp. 1-12, 12/27 2023, doi: 

10.52866/ijcsm.2024.05.01.001. 

[4] A. Al-Saegh and A. F. Hussein, "Wavelet-based Hybrid learning framework for motor imagery classification," 

2022. 

[5] T. F. Bastos, S. M. Muller, A. B. Benevides, and M. Sarcinelli-Filho, "Robotic wheelchair commanded by SSVEP, 

motor imagery and word generation," in Engineering in Medicine and Biology Society, EMBC, 2011 Annual 

International Conference of the IEEE, 2011: IEEE, pp. 4753-4756.  

[6] S. M. T. Müller, T. F. Bastos-Filho, and M. Sarcinelli-Filho, "Using a SSVEP-BCI to command a robotic 

wheelchair," in Industrial Electronics (ISIE), 2011 IEEE International Symposium on, 2011: IEEE, pp. 957-962.  

[7] A. Widyotriatmo and S. Andronicus, "A collaborative control of brain computer interface and robotic wheelchair," 

in Control Conference (ASCC), 2015 10th Asian, 2015: IEEE, pp. 1-6.  

[8] D. Puanhvuan and Y. Wongsawat, "Semi-automatic P300-based brain-controlled wheelchair," in Complex 

Medical Engineering (CME), 2012 ICME International Conference on, 2012: IEEE, pp. 455-460.  

[9] Á. Fernández-Rodríguez, F. Velasco-Álvarez, and R. Ron-Angevin, "Review of real brain-controlled 

wheelchairs," Journal of neural engineering, vol. 13, no. 6, p. 061001, 2016. 

[10] A. Kodi, D. Kumar, D. Kodali, and I. Pasha, "EEG-controlled Wheelchair for ALS Patients," in 2013 International 

Conference on Communication Systems and Network Technologies, 2013: IEEE, pp. 879-883.  

[11] K.-T. Kim, H.-I. Suk, and S.-W. Lee, "Commanding a brain-controlled wheelchair using steady-state 

somatosensory evoked potentials," IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016. 

[12] R. Chai, S. H. Ling, G. P. Hunter, Y. Tran, and H. T. Nguyen, "Brain–computer interface classifier for wheelchair 

commands using neural network with fuzzy particle swarm optimization," IEEE journal of biomedical and health 

informatics, vol. 18, no. 5, pp. 1614-1624, 2014. 



  

  

 

78 Al-Qaysi et al, Mesopotamian Journal of Big Data Vol. (2024), 2024, 68–81 

[13] R. Chai, S. H. Ling, G. P. Hunter, and H. T. Nguyen, "Mental non-motor imagery tasks classifications of brain 

computer interface for wheelchair commands using genetic algorithm-based neural network," in Proceedings of 

the International Joint Conference on Neural Networks,(IJCNN), Brisbane, Queensland, Australia, 10-15 June 

2012, 2012.  

[14] J. Li, J. Liang, Q. Zhao, J. Li, K. Hong, and L. Zhang, "Design of assistive wheelchair system directly steered by 

human thoughts," International journal of neural systems, vol. 23, no. 03, p. 1350013, 2013. 

[15] S. Garfan et al., "Telehealth utilization during the Covid-19 pandemic: A systematic review," Computers in 

Biology and Medicine, vol. 138, p. 104878, 2021/11/01/ 2021, doi: 

https://doi.org/10.1016/j.compbiomed.2021.104878. 

[16] M. A. Ahmed et al., "Real-time sign language framework based on wearable device: analysis of MSL, DataGlove, 

and gesture recognition," Soft Computing, vol. 25, no. 16, pp. 11101-11122, 2021/08/01 2021, doi: 

10.1007/s00500-021-05855-6. 

[17] M. A. Ahmed, B. B. Zaidan, A. A. Zaidan, M. M. Salih, Z. T. Al-qaysi, and A. H. Alamoodi, "Based on wearable 

sensory device in 3D-printed humanoid: A new real-time sign language recognition system," Measurement, vol. 

168, p. 108431, 2021/01/15/ 2021, doi: https://doi.org/10.1016/j.measurement.2020.108431. 

[18] P. J. García-Laencina, G. Rodríguez-Bermudez, and J. Roca-Dorda, "Exploring dimensionality reduction of EEG 

features in motor imagery task classification," Expert Systems with Applications, vol. 41, no. 11, pp. 5285-5295, 

2014. 

[19] Z. T. Al-Qaysi et al., "Systematic review of training environments with motor imagery brain–computer interface: 

Coherent taxonomy, open issues and recommendation pathway solution," Health and Technology, vol. 11, no. 4, 

pp. 783-801, 2021/07/01 2021, doi: 10.1007/s12553-021-00560-8. 

[20] M. H. Jasim et al., "Emotion detection among Muslims and non-Muslims while listening to Quran recitation using 

EEG," 2019. 

[21] R. D. Ismail, Q. A. Hameed, and M. B. Omar, "An EEG based Physiological Signal for Driver Behavior 

Monitoring Systems: A Review," Tikrit Journal for Computer Science and Mathematics, vol. 1, no. 1, pp. 38-54, 

2023. 

[22] M. Hadid et al., "Semantic Image Retrieval Analysis Based on Deep Learning and Singular Value 

Decomposition," Applied Data Science and Analysis, vol. 2024, pp. 17-31, 2024. 

[23] R. Liu, Z. Zhang, F. Duan, X. Zhou, and Z. Meng, "Identification of Anisomerous Motor Imagery EEG Signals 

Based on Complex Algorithms," Computational intelligence and neuroscience, vol. 2017, 2017. 

[24] O. S. Albahri et al., "Systematic review of artificial intelligence techniques in the detection and classification of 

COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future 

solutions and methodological aspects," Journal of Infection and Public Health, vol. 13, no. 10, pp. 1381-1396, 

2020/10/01/ 2020, doi: https://doi.org/10.1016/j.jiph.2020.06.028. 

[25] H. Azami and J. Escudero, "Combination of signal segmentation approaches using fuzzy decision making," in 

Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE , 

2015: IEEE, pp. 101-104.  

[26] A. S. Albahri et al., "A Systematic Review of Using Deep Learning Technology in the Steady-State Visually 

Evoked Potential-Based Brain-Computer Interface Applications: Current Trends and Future Trust Methodology," 

International Journal of Telemedicine and Applications, vol. 2023, p. 7741735, 2023/04/30 2023, doi: 

10.1155/2023/7741735. 

[27] A. S. Al-Fahoum and A. A. Al-Fraihat, "Methods of EEG signal features extraction using linear analysis in 

frequency and time-frequency domains," ISRN neuroscience, vol. 2014, 2014. 

[28] Z. T. Al-Qaysi et al., "A systematic rank of smart training environment applications with motor imagery brain-

computer interface," Multimedia Tools and Applications, vol. 82, no. 12, pp. 17905-17927, 2023/05/01 2023, doi: 

10.1007/s11042-022-14118-x. 

[29] M. Hadid, Q. M. Hussein, Z. Al-Qaysi, M. Ahmed, and M. M. Salih, "An Overview of Content-Based Image 

Retrieval Methods And Techniques," Iraqi Journal For Computer Science and Mathematics, vol. 4, no. 3, pp. 66-

78, 2023. 

[30] S. Siuly and Y. Li, "Improving the separability of motor imagery EEG signals using a cross correlation-based least 

square support vector machine for brain–computer interface," IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 20, no. 4, pp. 526-538, 2012. 

[31] R. Ebrahimpour, K. Babakhani, and M. Mohammad-Noori, "EEG-based motor imagery classification using 

wavelet coefficients and ensemble classifiers," in The 16th CSI International Symposium on Artificial Intelligence 

and Signal Processing (AISP 2012), 2012: IEEE, pp. 458-463.  

https://doi.org/10.1016/j.compbiomed.2021.104878
https://doi.org/10.1016/j.measurement.2020.108431
https://doi.org/10.1016/j.jiph.2020.06.028


  

  

 

79 Al-Qaysi et al, Mesopotamian Journal of Big Data Vol. (2024), 2024, 68–81 

[32] P. Bhuvaneswari and J. S. Kumar, "Support vector machine technique for EEG signals," International Journal of 

Computer Applications, vol. 63, no. 13, 2013. 

[33] Y. Li, J. Pan, F. Wang, and Z. Yu, "A hybrid BCI system combining P300 and SSVEP and its application to 

wheelchair control," IEEE Transactions on Biomedical Engineering, vol. 60, no. 11, pp. 3156-3166, 2013. 

[34] F. Aziz, H. Arof, N. Mokhtar, and M. Mubin, "HMM based automated wheelchair navigation using EOG traces 

in EEG," Journal of neural engineering, vol. 11, no. 5, p. 056018, 2014. 

[35] K. Choi, "Control of a vehicle with EEG signals in real-time and system evaluation," European journal of applied 

physiology, vol. 112, no. 2, pp. 755-766, 2012. 

[36] H. Wang, Y. Li, J. Long, T. Yu, and Z. Gu, "An asynchronous wheelchair control by hybrid EEG–EOG brain–

computer interface," Cognitive neurodynamics, vol. 8, no. 5, pp. 399-409, 2014. 

[37] I. H. Parmonangan, J. Santoso, W. Budiharto, and A. A. S. Gunawan, "Fast brain control systems for electric 

wheelchair using support vector machine," in First International Workshop on Pattern Recognition, 2016, vol. 

10011: International Society for Optics and Photonics, p. 100111N.  

[38] Z. Li, S. Lei, C.-Y. Su, and G. Li, "Hybrid brain/muscle-actuated control of an intelligent wheelchair," in Robotics 

and Biomimetics (ROBIO), 2013 IEEE International Conference on, 2013: IEEE, pp. 19-25.  

[39] K. Choi and A. Cichocki, "Control of a wheelchair by motor imagery in real time," in International Conference 

on Intelligent Data Engineering and Automated Learning, 2008: Springer, pp. 330-337.  

[40] K. Kaneswaran, K. Arshak, E. Burke, and J. Condron, "Towards a brain controlled assistive technology for 

powered mobility," in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International 

Conference of the IEEE, 2010: IEEE, pp. 4176-4180.  

[41] B.-G. Shin, T. Kim, and S. Jo, "Non-invasive brain signal interface for a wheelchair navigation," in Int. Conf. on 

Control Automation and Systems, 2010.  

[42] G. Reshmi and A. Amal, "Design of a BCI system for piloting a wheelchair using five class MI Based EEG," in 

2013 Third International Conference on Advances in Computing and Communications (ICACC), 2013: IEEE, pp. 

25-28.  

[43] S. He et al., "A p300-based threshold-free brain switch and its application in wheelchair control," IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 6, pp. 715-725, 2017. 

[44] L. Cao, J. Li, H. Ji, and C. Jiang, "A hybrid brain computer interface system based on the neurophysiological 

protocol and brain-actuated switch for wheelchair control," Journal of neuroscience methods, vol. 229, pp. 33-43, 

2014. 

[45] H. A. Lamti, P. Gorce, M. M. Ben Khelifa, and A. M. Alimi, "When mental fatigue maybe characterized by Event 

Related Potential (P300) during virtual wheelchair navigation," Computer methods in biomechanics and 

biomedical engineering, vol. 19, no. 16, pp. 1749-1759, 2016. 

[46] A. Ferreira, T. F. Bastos Filho, M. Sarcinelli Filho, J. L. M. Sanchez, J. C. G. García, and M. M. Quintas, 

"Evaluation of PSD Components and AAR Parameters as Input Features for a SVM Classifier Applied to a Robotic 

Wheelchair," in BIODEVICES, 2009, pp. 7-12.  

[47] T. L. Fan, C. Ng, J. Ng, and S. Goh, "A brain-computer interface with intelligent distributed controller for 

wheelchair," in 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, 2008: Springer, 

pp. 641-644.  

[48] A. B. Benevides, T. F. Bastos, and M. Sarcinelli Filho, "Proposal of Brain-Computer Interface architecture to 

command a robotic wheelchair," in Industrial Electronics (ISIE), 2011 IEEE International Symposium on, 2011: 

IEEE, pp. 2249-2254.  

[49] M. Carra and A. Balbinot, "Evaluation of sensorimotor rhythms to control a wheelchair," in Biosignals and 

Biorobotics Conference (BRC), 2013 ISSNIP, 2013: IEEE, pp. 1-4.  

[50] K.-T. Kim, T. Carlson, and S.-W. Lee, "Design of a robotic wheelchair with a motor imagery based brain-computer 

interface," in Brain-Computer Interface (BCI), 2013 International Winter Workshop on, 2013: IEEE, pp. 46-48.  

[51] F. Galán et al., "A brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for 

continuous control of robots," Clinical neurophysiology, vol. 119, no. 9, pp. 2159-2169, 2008. 

[52] G. Gentiletti, J. Gebhart, R. Acevedo, O. Yáñez-Suárez, and V. Medina-Bañuelos, "Command of a simulated 

wheelchair on a virtual environment using a brain-computer interface," Irbm, vol. 30, no. 5-6, pp. 218-225, 2009. 

[53] I. Iturrate, J. M. Antelis, A. Kubler, and J. Minguez, "A noninvasive brain-actuated wheelchair based on a P300 

neurophysiological protocol and automated navigation," IEEE transactions on robotics, vol. 25, no. 3, pp. 614-

627, 2009. 

[54] K.-T. Kim and S.-W. Lee, "Towards an EEG-based intelligent wheelchair driving system with vibro-tactile 

stimuli," in Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on, 2016: IEEE, pp. 

002382-002385.  



  

  

 

80 Al-Qaysi et al, Mesopotamian Journal of Big Data Vol. (2024), 2024, 68–81 

[55] K.-T. Kim, H.-I. Suk, and S.-W. Lee, "Commanding a brain-controlled wheelchair using steady-state 

somatosensory evoked potentials," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 

26, no. 3, pp. 654-665, 2018. 

[56] I. Iturrate, J. Antelis, and J. Minguez, "Synchronous EEG brain-actuated wheelchair with automated navigation," 

in Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, 2009: IEEE, pp. 2318-2325.  

[57] T. Kaufmann, A. Herweg, and A. Kübler, "Toward brain-computer interface based wheelchair control utilizing 

tactually-evoked event-related potentials," Journal of neuroengineering and rehabilitation, vol. 11, no. 1, p. 7, 

2014. 

[58] S. T. Müller, W. C. Celeste, T. F. Bastos-Filho, and M. Sarcinelli-Filho, "Brain-computer interface based on visual 

evoked potentials to command autonomous robotic wheelchair," Journal of Medical and Biological Engineering, 

vol. 30, no. 6, pp. 407-415, 2010. 

[59] T. Bastos-Filho, A. Ferreira, D. Cavalieri, R. Silva, S. Muller, and E. Pérez, "Multi-modal interface for 

communication operated by eye blinks, eye movements, head movements, blowing/sucking and brain waves," in 

Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP, 2013: IEEE, pp. 1-6.  

[60] B. M. Faria, L. P. Reis, and N. Lau, "Cerebral palsy eeg signals classification: Facial expressions and thoughts for 

driving an intelligent wheelchair," in Data Mining Workshops (ICDMW), 2012 IEEE 12th International 

Conference on, 2012: IEEE, pp. 33-40.  

[61] Z. Bahri, S. Abdulaal, and M. Buallay, "Sub-band-power-based efficient brain computer interface for wheelchair 

control," in Computer Applications & Research (WSCAR), 2014 World Symposium on, 2014: IEEE, pp. 1-7.  

[62] G. Pires and U. Nunes, "A Brain Computer Interface methodology based on a visual P300 paradigm," in Intelligent 

Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009: IEEE, pp. 4193-4198.  

[63] A. C. Lopes, G. Pires, and U. Nunes, "Assisted navigation for a brain-actuated intelligent wheelchair," Robotics 

and Autonomous Systems, vol. 61, no. 3, pp. 245-258, 2013. 

[64] M. E. Abdalsalam, M. Z. Yusoff, N. Kamel, A. Malik, and M. Meselhy, "Mental task motor imagery classifications 

for noninvasive brain computer interface," in Intelligent and Advanced Systems (ICIAS), 2014 5th International 

Conference on, 2014: IEEE, pp. 1-5.  

[65] H. T. Nguyen, N. Trung, V. Toi, and V.-S. Tran, "An autoregressive neural network for recognition of eye 

commands in an EEG-controlled wheelchair," in Advanced Technologies for Communications (ATC), 2013 

International Conference on, 2013: IEEE, pp. 333-338.  

[66] A. Ferreira, D. C. Cavalieri, R. L. Silva, T. F. Bastos Filho, and M. Sarcinelli Filho, "A Versatile Robotic 

Wheelchair Commanded by Brain Signals or Eye Blinks," in BIODEVICES (2), 2008, pp. 62-67.  

[67] T. A. Izzuddin, M. Ariffin, Z. H. Bohari, R. Ghazali, and M. H. Jali, "Movement intention detection using neural 

network for quadriplegic assistive machine," in Control System, Computing and Engineering (ICCSCE), 2015 

IEEE International Conference on, 2015: IEEE, pp. 275-280.  

[68] W. Caesarendra, M. Ariyanto, S. U. Lexon, E. D. Pasmanasari, C. R. Chang, and J. D. Setiawan, "EEG based 

pattern recognition method for classification of different mental tasking: Preliminary study for stroke survivors in 

Indonesia," in Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information 

Technology (ICACOMIT), 2015 International Conference on, 2015: IEEE, pp. 138-144.  

[69] C. Naijian, H. Xiangdong, W. Yantao, C. Xinglai, and C. Hui, "Coordination control strategy between human 

vision and wheelchair manipulator based on BCI," in Industrial Electronics and Applications (ICIEA), 2016 IEEE 

11th Conference on, 2016: IEEE, pp. 1872-1875.  

[70] L. R. Borges, F. R. Martins, E. L. Naves, T. F. Bastos, and V. F. Lucena, "Multimodal system for training at 

distance in a virtual or augmented reality environment for users of electric-powered wheelchairs," IFAC-

PapersOnLine, vol. 49, no. 30, pp. 156-160, 2016. 

[71] R.-M. Hjørungdal, F. Sanfilippo, O. Osen, A. Rutle, and R. T. Bye, "A game-based learning framework for 

controlling brain-actuated wheelchairs," in 30th European Conference on Modelling and Simulation, Regensburg 

Germany, May 31st–June 3rd, 2016, 2016: ECMS European Council for Modelling and Simulation.  

[72] M. A. Ahmed et al., "Intelligent Decision-Making Framework for Evaluating and Benchmarking Hybridized 

Multi-Deep Transfer Learning Models: Managing COVID-19 and Beyond," International Journal of Information 

Technology & Decision Making, p. 2350046, 2023, doi: 10.1142/S0219622023500463. 

[73] A. Albahri et al., "A Trustworthy and Explainable Framework for Benchmarking Hybrid Deep Learning Models 

Based on Chest X-Ray Analysis in CAD Systems," International Journal of Information Technology and Decision 

Making, 2024. 

[74] M. M. Salih, Z. T. Al-Qaysi, M. L. Shuwandy, M. A. Ahmed, K. F. Hasan, and Y. R. Muhsen, "A new extension 

of fuzzy decision by opinion score method based on Fermatean fuzzy: A benchmarking COVID-19 machine 



  

  

 

81 Al-Qaysi et al, Mesopotamian Journal of Big Data Vol. (2024), 2024, 68–81 

learning methods," Journal of Intelligent & Fuzzy Systems, vol. 43, pp. 3549-3559, 2022, doi: 10.3233/JIFS-

220707. 

[75] M. A. Ahmed, Z. T. Al-qaysi, M. L. Shuwandy, M. M. Salih, and M. H. Ali, "Automatic COVID-19 pneumonia 

diagnosis from x-ray lung image: A Deep Feature and Machine Learning Solution," Journal of Physics: 

Conference Series, vol. 1963, no. 1, p. 012099, 2021/07/01 2021, doi: 10.1088/1742-6596/1963/1/012099. 

[76] M. M. Salih, M. Ahmed, B. Al-Bander, K. F. Hasan, M. L. Shuwandy, and Z. Al-Qaysi, "Benchmarking 

Framework for COVID-19 Classification Machine Learning Method Based on Fuzzy Decision by Opinion Score 

Method," Iraqi Journal of Science, pp. 922-943, 2023. 

[77] Z. T. Al-qaysi, A. S. Albahri, M. A. Ahmed, and M. M. Salih, "Dynamic decision-making framework for 

benchmarking brain–computer interface applications: a fuzzy-weighted zero-inconsistency method for consistent 

weights and VIKOR for stable rank," Neural Computing and Applications, 2024/03/16 2024, doi: 

10.1007/s00521-024-09605-1. 

[78] Z. T. Al-Qaysi, A. S. Albahri, M. A. Ahmed, and S. M. Mohammed, "Development of hybrid feature learner 

model integrating FDOSM for golden subject identification in motor imagery," Physical and Engineering Sciences 

in Medicine, vol. 46, no. 4, pp. 1519-1534, 2023/12/01 2023, doi: 10.1007/s13246-023-01316-6. 

[79] A. Saihood, M. A. Al-Shaher, and M. A. Fadhel, "A New Tiger Beetle Algorithm for Cybersecurity, Medical 

Image Segmentation and Other Global Problems Optimization," Mesopotamian Journal of CyberSecurity, vol. 4, 

no. 1, pp. 17-46, 2024. 

[80] G. Ali and M. M. Mijwil, "Cybersecurity for Sustainable Smart Healthcare: State of the Art, Taxonomy, 

Mechanisms, and Essential Roles," Mesopotamian Journal of CyberSecurity, vol. 4, no. 2, pp. 20-62, 2024. 

[81] Y. Zhang et al., "Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces," 

Expert Systems with Applications, vol. 96, pp. 302-310, 2018. 

[82] M. L. Shuwandy et al., "Sensor-based authentication in smartphone: A systematic review," Journal of Engineering 

Research, 2024/02/09/ 2024, doi: https://doi.org/10.1016/j.jer.2024.02.003. 

[83] R. Chai, S. H. Ling, G. P. Hunter, Y. Tran, and H. T. Nguyen, "Brain–computer interface classifier for wheelchair 

commands using neural network with fuzzy particle swarm optimization," IEEE journal of biomedical and health 

informatics, vol. 18, no. 5, pp. 1614-1624, 2013. 
 

https://doi.org/10.1016/j.jer.2024.02.003

