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A B S T R A C T 
Many of the images that can be accessed through web search engines or social media networking sites 
are rare and not high quality because they are endangered or disappear. There must be a way to increase 
the quality of these images and conduct experiments to reduce noise, remove blur, and make them 
sharper to reach high-quality surfaces. Approaches that seek to achieve better results compete to 
increase the efficiency of those low-resolution images and generate images with the same color (RGB) 
characteristics but with higher quality. Deep learning algorithms, especially the use of convolutional 
neural networks (CNNs), have achieved advanced results within this context. In this approach, we 
propose a powerful base model UIR for image recovery by using conventional neural networks (CNNs) 
added to conventional algorithms for ultrasupper-resolution from low-resolution images by extracting 
the feature map from a low-resolution image ILR as overlapping superresolution ISR patches, in which 
every patch represents a high-dimensional vector. The missing features of the pixels that occur during 
the training process are subsequently compensated via the residual Swin Transformer block (RSTB). 
The results of quantitative evaluation experiments using PSNR(db)/SSIM metrics were superior to those 
of state-of-the-art methods on benchmark datasets (Set5, Set14, and BSD100). The selected images 
have a magnification of x2, resulting in values of (36.86(db)/0.9739, 36.10(db)/0.9656, 
34.74(db)/0.9893) and x4, resulting in values of (34.44(db)/0.9784, 27.71(db)/0.8894, and 
26.87(db)/0.9915, respectively. The results of the visual comparison also revealed that the texture of 
the surfaces is sharper, more expressive, less noisy, and blurry than those of the other methods.

 

 

1. INTRODUCTION 

Many research approaches have demonstrated the importance of deep learning in recovering high -quality images from low-
quality images. Deep learning algorithms have achieved superior technical performance in restoring rough surfaces of 
damaged or low-resolution images. In addition, deep learning can develop more complex models to handle image 
degradation scenarios [1]. Deep learning has many applications in image recovery, including in the fields of imaging, medical 
imaging, and surveillance [2]. By harnessing the power of deep learning, image reconstruction can be performed more 
effectively and efficiently than ever before. Deep image restoration is the process of recovering high -quality images from 

damaged input images. Image degradation can be caused by va rious factors, such as blur, noise, or low resolution [3]. The 
restoration process involves estimating a clean original image from a damaged copy via deep learning techniques, specifically  
deep convolutional neural networks. Deep photo recovery is a form of photo recovery that uses deep learning methods to 
create high-quality images [4]. 
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Several methods [5] rely on the reconstruction of high-resolution patches from low-resolution images by overlapping 
patches. A low-resolution dictionary then encodes these patches. The final output is reconstructed by overlaying overlapping 
patches that rely on effective depth mapping to build functionality through a unified framework [6]. These methods, which 
rely on recovering superresolution images from low-resolution images, learn to find maps from both external low- and high-
resolution 2D image pairings on the basis of the similarity of internal properties [7] and the training examples supplied by 
the datasets [8]. We name our proposed method image recovery via deep conventional neural network conventional 
algorithms. The primary concept is based on the use of two specialized convolutional neural networks in the superresolution 
of 2D images. 

 

First, the feature map from a low-resolution image ILR is extracted as overlapping superresolution ISR patches, in which 
every patch represents a high-dimensional vector by learning deep convolutional neural networks (CNNs) to map between 
LR/HR 2D images. Once the patches are extracted, they are represented as high-dimensional vectors. This is achieved by 
using a deep neural network to map between low-resolution and high-resolution 2D images. CNNs have been shown to 
effectively learn complex mappings between two image types, leading to more accurate feature extraction [9][10]. High-
dimensional vector representations of patches allow for more efficient processing and analysis of features [11]. Overall, 
training deep CNNs to extract features from low-resolution images is a complex process that requires careful consideration 
of architecture selection, dataset selection, and fine-tuning. However, with the right approach, CNNs can efficiently extract 
high-dimensional feature vectors from overlapping high-resolution patches, allowing the creation of high-quality images 
from low-resolution inputs [12][13]. Second, we adopt a logical method for strengthening the basic features of the low-

resolution 2D image via deep learning networks to ensure that the missing features of pixels that occur during the training 
process are compensated via the residual Swin Transformer block (RSTB). 

Research progress in supervised self-learning has effectively supported image restoration models by reconstructing textures 
and correcting dimensions in a manner that mimics their original structure. Multiple mask techniques are used to remove 
spatial noise correlations that accompany training stages, achieving high accuracy and noise reduction in realistic sRGB 
images. Moreover, transformer-based methods (such as SwinIR) and modular diffusion strategies address texture restoration 
by modelling global contexts. These approaches overcome the limitations of scarce or missing datasets in supervised self -
learning and enable real-time handling of complex degradations—critical for advanced medical imaging applications and 
digital cultural heritage preservation. 

One of the main features and strengths of RSTB is its ability to handle images of different sizes and resolutions efficiently. 
We examine our approach with pretrained models according to a software strategy, which is the ImageNet model. The tests 
are then conducted by sampling 2D images from benchmark datasets (Set5[35], Set14[36], BSD100[37]). Quantitative 
copmeration results between our model (UIR) and other state-of-the-art methods (Bicubic [38], NE+LLE [39], ANR [40], 
KK [41], SRCNN [42] and SwinIR [54]) for ×2 and ×4 sampling sequentially through look (PSNR [43], SSIM [44]) metric 
results. Quantitative comparison of the performance of our method (UIR) results on the PSNR (dB) and SSIM metrics 
compared with those of the other methods. The proposed image processing method is trained and tested on three large-scale 
datasets: Set5, Set14, and BSD100 fit pretrained ImageNet models. Compared with the state -of-art methods, the results of 
the visual evaluation of our proposed approach (UIR) on images from the test datasets (Set5, Set14, and BSD100) revealed 
higher resolution and a rougher texture surface with more details. 

 

2. RELATED WORKS 

Image recovery is the process of reconstructing high-quality image content from a degraded version [14]. 2D image 

reconstruction approaches aim to remove the effects of deterioration and convert the two-dimensional image into a state that 

is close or similar to its true meaning and original dimensions that were captured by the usual lenses [15]. In turn, these 

algorithms work to reduce the effects that change the basic tilings of the image, remove the defects resulting from the causes, 
and restore an appropriate shape close to or identical to its original perspective, such as motion blur, noise, camera out -of-

focus, lens errors, and sensor noise. Wuttinan et al. [16] proposed a fast data restoration system based on deep learning 

algorithms by applying the adversarial network (GAN) principle, called the licence plate recovery GAN (LPRGAN). The 

design employs a proposed encoder‒decoder style inspired by autoencoders supported by dual classification networks. This 
style is suitable for problem-specific learning, as strong contextual information can be retrieved from the reduced 

representations. Wenbo Li et al. [17] presented an analytical approach to design analysis techniques for ultrahigh-resolution 

models aimed at efficient image upscaling from HD to 4K. This model presents an accurate description of a precise technique 

that aims to increase image efficiency through the reconstruction of its details by restoring the high frequencies to their 
characteristics by reducing the depth maps of the target images by analysing them simultaneously while maintaining their 

high-accuracy recovery. Delin Liu et al. used terahertz time-domain spectroscopy (THz-TDS) for full-field stress 

measurement and added it to the superresolution convolutional neural network (SRCNN) method to obtain a high spatial 

resolution stress field. Modulation models are created from planar voltage states to terahertz TDS signals. A large number 

of simulated sentences are obtained to train the SRCNN model. The numerical and physical stress fields are mapped via  a 
trained SRCNN model [18]. Yu Cao et al. [19] proposed a novel image enhancement architecture called SR-MRI, which 

attempts to improve the quality of low-resolution neural images in combination with a real ESRGAN deep learning model. 

3T-MRI and 7T-MRI were connected into the same analysis range; then, several evaluation indices, such as Burner, SMD, 

SMD2, variance, Vollath, entropy, and NIQE, were systematically compared. The experimental results show that the SR-
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MRI framework largely recovers the edge, subtle and texture features of low-resolution neural images. Yinggan Tang et al. 

[20] proposed a new SISR method based on the Wasserstein GAN, which uses the Wasserstein metric to train more stable 
GANs. To further enhance the superresolution performance and achieve stability during the training steps, two modifications 

were made to the original WGAN. First, a  gradient penalty is introduced to replace weight cutting. Second, create a residual 

block network with a "preactivation" weight layer in the WGAN's generator. Ziwei Luo et al. [21] proposed improved kernel 

estimation and kernel-based high-resolution image restoration. Two new modules are reformulated to address the resulting 
degradation of the superresolution blind images. Standardizing learning for a fixed kernel and all images reduces the kernel 

weights sufficiently on the basis of the inputs, the most expensive of which is to generate a stronger kernel [61-64]. A deep 

least squares filtering engine is then applied to generate clean features from the reconstructed and estimated kernels. The 

defused features and low-input image features are then fed into a dual-path structured SR network to recreate the final high-

resolution result [65-67]. 

 

3. METHOD 

Our approach (UIR), as shown in Figure 1, aims to reconstruct the basic properties of features in single low-resolution (RGB) 
2D image ILRs, using convolutional neural networks (CNNs) added to conventional algorithms [1] down to an ultrasuper-
resolution 2D image LSR. This scale is close to the high-resolution image and sharpens surface details. 

CNNs are powerful image-processing algorithms that can enhance image quality, making images more apparent and visually 
appealing [22]. Combining multiple CNNs for image enhancement has several advantages. By using multiple CNNs, the 
strengths of each model can be exploited to achieve better results. Furthermore, a combination of CNNs can help overcome 
the limitations of individual models, such as overfitting or underfitting [23]. The upscaling method is then applied to the 
vector patches to create HR images. This process involves various techniques, such as B. Histogram manipulation and 
extension methods, which are based on generative adversarial networks (GANs) [24]. Furthermore, single -frame deep 
learning methods involve superresolution, where a method tra ins end-to-end LR/HR match mapping 2D images directly 
[25]. Using these techniques, upscaling methods can generate more detailed and sharper HR images than can the original 
LR images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Our approach pipeline (UIR) for 2D image recovery uses deep conventional neural networks added to conventional 
algorithms. 

In the first stage of our approach, we extract the feature map from a low-resolution image ILR as overlapping high-resolution 
patches, in which every patch represents a high-dimensional vector by learning deep convolutional neural networks (CNNs) 
to map between LR/HR 2D images [26]. Patches of feature map extraction by a pretrained model, such as pretrained feature 
mapping (PFM) [27], are identical to a set of image filters. An is expressed as equation (1). 

F(ILR) = max(0, M *  ILR  + K)……… (1) 

M and K represent the image filters. In addition, (ReLU, max(0, x)) [28] is used for a rectified linear unit on the filters. 
During training, I was required to estimate a parameter of the network. Ɵ = {M1,M2,Mn;K1,k2,kn}. This is achieved by 
lowering the loss between the recovered images F(ILR, Ɵ) and the corresponding ground truth high -resolution images IHR 
via the mean square error loss function (MSE): 

L(Ɵ) = 
1

𝑛
 σ || 𝐹ሺ    𝐼𝐿𝑅  , Ɵሻ − 𝑛

𝑖=1  IHR  ||2)……… (2) 

n represents the number of training samples. In the image domain, the upscaling method is applied to every pixel by 
shifting up features that are extracted to high-resolution vector patches. 
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In the second stage of our approach, we adopt a logical method for strengthening the basic features of the low-resolution 
2D image via deep learning networks to ensure that the missing features of the pixels that occur during the training process 
are compensated via the residual Swin Transformer block (RSTB). One of the main features and strengths of RSTB is its 
ability to handle images of different sizes and resolutions efficiently. The aset of the Swin transformer layers uses a multihead 
self-aware mechanism based on shifted windows, allowing images to be processed on a block basis, which is more memory 
efficient than processing the entire image at once [29]. The image feature F1,……, Fn is extracted by training the 
convolutional layer of the STBL. Convolutional layers with spatially invariant filters can improve translation equivariance. 
Then, the remainder is given an identity-based connection of different blocks with reconstruction modules, allowing 
aggregation of different feature levels. An is expressed as equation 3. 

Fi,Extaction = CLi (Fi,n) + Fi,1 ……… (3) 

CLi (Fi,n) is an RSTB convolutional layer. Our approach has proven highly effective for integrating deep neural networks 
and building deep models in the qualitative restoration of 2D image features and has achieved advanced results over some 
state-of-the-art methods in terms of clarity and accuracy in terms of quality by restoring high-resolution images from low-
resolution images, which we will discuss in detail in the next section. 

Superresolution models that utilize a residual Swin transformer block (RSTB) commonly use a  patch size of 48×48 or 64×64 
for the training stage. Our approach (UIR) aims to achieve a balance between computational efficiency and context capture. 
During the model-training phase, RGB image datasets, as inputs, are divided and transformed into overlapping patches of 
size 48×48 pixels, with a 50% overlap and a stride of 24 pixels. The validation results demonstrate effective performance on 
the BSD100, Set14, and Set5 datasets. During inference, overlapping areas are combined with learnable weighted averaging 

to reduce border artifacts. 

The residual Swin Transformer Block (RSTB) for superresolution images consists of several Swin Transformer Layers 

(STLs) and a residual connection. STL includes LayerNorm (LN), window-based multihead self-attention (W-MSA), or 

shifted window-based MSA (SW-MSA). The RSTB features six Swin Transformer Layers (STLs) per block for lightweight 

image restoration, as shown in Figure 2. Easier cross-window connections, the mechanism is switched between the W-MSA 
and SW-MSA layers in succession. The typical window size for image restoration tasks is 8x8. Shifting between shift  and 

nonshift windows (window_size=8, shift_size=4) allows for crosswindow connectivity. 6-layer design optimized for SR 

tasks (vs. 12+ in categorization). For dual-path feature extraction, the transformer path captures long-range relationships via  

shifted-window self-attention with the CNN path: 3×3 convolutions maintain local texture details and fuse features through 
a 1×1 convolution with a residual connection. The main procedure explains how RSTB blocks include a convolutional layer 

to extract and enhance local features: 

 

Class RSTB Module  inputs [No._heads, W_size =8, sht_size=4), 

Swin Transformer (ST) Layers  No._heads=No._heads, W_size = W_size, 

for i in range(6)  # 6-layer configuration 

#Convolutional Enhancemen  self.conv_block = nn. Sequential mm. Conv2d(dim, dim, 3, padding=1), mm. ReLU(), 

Feature Fusion  self.fusion = nn. Conv2d(2*dim, dim, 1) 

        combined = torch.cat([x_trans, p_conv], dim=1) 

        out.s = self.fusion(combined) + shortcut.p 

        return out 
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Fig. 2. RSTB architecture used in the UIR approach for image superresolution. 

 

 

4. EXPERIMENTS 

4.1 Training Model 
To extract features from low-resolution (SR) images and find high-resolution patch vectors via  the ImageNet dataset [30] 
for pretraining, image superresolution models include selecting a pretraining model, fine-tuning the model on the ImageNet 
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dataset, and then fine-tuning the model on the target image superresolution dataset [31]. Data augmentation techniques can 
also be used to increase the quality of the training dataset, leading to better model performance. By using the ImageNet 
dataset for pretraining image superresolution models, the model can learn to extract high-level features from images, leading 
to improved image quality and resolution [32]. In addition, ImageNet pretrained models include pretrained deep learning 
architectures, such as VGG-16, a well-known ImageNet pretrained model [33]. In fact, VGG-16 won first place in ImageNet 
ILSVRC-2014, making it one of the best-pretrained models for image classification [34]. Researchers can use this open-
source pretrained model to create image classification models or improve existing models. 

To ensure that the model is tested with more accurate results, we also use the DIV2K dataset, which is often used to pretrain 
high-resolution image models. The dataset consists of 1000 high-resolution (2K) RGB images with different contents and is 
used to pretrain DnCNN-based schemes and SVQE models for image superresolution [4]. In a specific experiment, 750 
images from this dataset were used for training, with a QP set to 45 for high-resolution images [4]. When synthesizing low-
resolution images for different challenge tracks, different types of degradations are considered in addition to standard bicubic 
downsampling [51-55]. 

An upscaling factor learns ImageNet-trained first-layer filters of 2 or 4. Interestingly, each kind of filter is learned before it 
has a  specific function. For example, filters g and h are Laplacian/Gaussian filters, edge detectors with variable orientations, 
and surface texture extractors, respectively [56-60]. 

 

4.2 Results 

We must examine our approach via pretrained models according to a software strategy using the Python language, which is 
the ImageNet model. The tests are then conducted by sampling 2D images from benchmark datasets (Set5[35], Set14[36], 
BSD100[37]). Tables 1 and 2 show quantitative comparison results between our model (UIR) and state -of-the-art methods 
(Bicubic [38], NE+LLE [39], ANR [40], KK [41], and SRCNN [42]) for ×2 and ×4 sampling sequentially through look 
(PSNR [43], SSIM [44]) metric results. 

Table 1. The quantitative comparison results of (PSNR (dB)/SSIM) on ×2 upscaling between our approach and state -of-

the-art methods. 

Method Scale Pre-Training 

 Model 

Set5 Set14 BSD100 

PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic 2 ImageNet 33.66 0.9299 30.23 0.8687 28.38 0.8524 

NE+LLE 2 ImageNet 35.77 0.9490 31.76 0.8993 29.67 0.8886 

ANR 2 ImageNet 35.83 0.9499 32.28 0.9056 30.14 0.8966 

KK 2 ImageNet 36.20 0.9511 31.80 0.9004 29.72 0.8900 

SRCNN 2 ImageNet 36.66 0.9542 32.45 0.9067 30.29 0.8977 

SwinIR 2 ImageNet 36.74 0.9639 34.79 0.9412 33.81 0.9016 

UIR(our) 2 ImageNet 36.86 0.9739 36.10 0.9656 34.74 0.9893 

 

Table 2. The quantitative comparison results of (PSNR (dB)/SSIM) on ×4 upscaling between our approach and state -of-

the-art methods. 

Method Scale Pre-Training 

 Model 

Set5 Set14 BSD100 

PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic 4 ImageNet 28.42 0.8104   26.00 0.7019 24.65 0.6727 

NE+LLE 4 ImageNet 29.61 0.8402 26.81 0.7331 25.21 0.7037 

ANR 4 ImageNet 29.69 0.8419 27.32 0.7491 25.51 0.7171 

KK 4 ImageNet   30.03 0.8541 26.85 0.7352 25.25 0.7060 

SRCNN 4 ImageNet 30.49 0.8628 27.50 0.7513 25.60 0.7184 

SwinIR 2 ImageNet 32.20 0.8732 27.63 0.7927 25.78 0.8331 

UIR(our) 4 ImageNet 34.44 0.8784 27.71 0.8894 26.87 0.9915 

 

A quantitative evaluation of our method's performance (UIR) with respect to state-of-the-art approaches yields results in 
terms of the PSNR (dB) and SSIM metrics, as demonstrated in Tables 1 and 2. The proposed image processing method is 
trained and tested on three large-scale datasets: Set5, Set14, and BSD100 fit pretrained ImageNet models. The PSNR 
specifications are 36.86 dB, 36.10 dB, and 34.74 dB at the x2 image scale. Our method also outperforms other 2D image 
processing methods in quantitatively evaluating the SSIM metric, yielding the best quantitative results of 0.9739, 0.9656, 
and 0.9893. The evaluation is based on the PSNR (dB) and SSIM metrics, and the best values are shown in the comparison 
in Table 1. Additionally, the results of the proposed approach are more advanced than those of state-of-the-art methods when 
the scale of 2D images is increased to x4 when the ImageNet pretrained model is trained. The quantitative evaluation results 
are presented in Table 2. The PSNR values are 34.44, 27.71, and 26.87, and the SSIM values are 0.97849, 0.8894, and 
0.9915. We notice through the curves in Figure 3 and Figure 4 the accuracy achieved by our method through the high values 
obtained compared with the values created by other methods. 
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Fig. 3. PSNR(dB)/SSIM curve results of UIR compared with those of the other methods on the x2 magnified images of 

the Set5, Set14 and DSB100 datasets. 

 

Fig. 4. PSNR(dB)/SSIM curve results of UIR compared with those of the other methods on the x2 magnified images of 

the Set5, Set14 and DSB100 datasets. 
 

Our RSTB design is more sophisticated owing to shifted-window attention, with 301 GMACs for 720p input (compared 

with SwinIR's 235). The inference latency of the RSTB algorithm reaches 36.10 dB PSNR on Set14 at 143 ms (V200 

GPU), which is 42% slower than that of SwinIR but 1.31 dB greater in fidelity. 

As shown in Figures 5, 6, and 7, the results of the visual evaluation of our UIR method compared with the state-of-the-art 
methods on images from the test datasets (Set5, Set14, and BSD100) revealed higher resolution and a rougher texture 

surface with more details. Accordingly, the method adopted in this approach has achieved superresolution 2D single-

image ISR from low-resolution image ILR that is close to natural image IHR. 
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Fig. 5. Visual evaluation of bird images in the Set5 dataset (x4) methods. 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

Fig. 6. Visual evaluation of baboon images in the Set14 dataset (x4) methods. 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

Fig. 7. Visual evaluation of 3096 images in the BSD100 dataset (x4). 

 

 

 

5. CONCLUSION 
We introduced a deep learning strategy for single-image recovery called superresolution (SR). A high-dimensional vector 
patch is identified through extracting a feature map from low-resolution image ILR overlapping high-resolution patches 

by learning deep convolutional neural networks (CNNs) to map between LR/HR 2D images. In addition, the essential 

features of low-resolution 2D images are augmented via  deep learning networks to ensure that residual Swin Transformer-

Block (RSTB) is used to compensate for pixel-missing features that occur during training. This method has achieved 
superior performance in image upscaling and high-resolution 2D image texture surface reconstruction. Thus, this deep 

method can be used to recover rare, low-resolution images that are found on web engines, such as archeological images or 

images that extend back to the past century and that were taken before the current technological advancements. Through 

experimental settings, we can see a genuine and concrete benefit of contemporary approaches over their predecessors. 

However, severe failures persist, necessitating efforts to close the gap between quantitative tests and tangible, real-world  
outcomes. This necessitates reducing the complexity of deterioration and enhancing the perceived consistency of recovered 

pictures. All research efforts and improved outcomes prioritize robustness and the reduction of physical degradation 

models, which is a promising direction. 
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