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A B S T R A C T 

Alzheimer's disease (AD) presents significant diagnostic challenges owing to the subtle morphological 

similarities observed in the early stages, with traditional deep learning approaches often struggling to 

distinguish between the various stages of disease progression via structural Magnetic Resonance 

Imaging (MRI) data. Quantum computing offers unique advantages for medical image analysis, 

leveraging superposition and entanglement capabilities to process high-dimensional feature spaces 

beyond the limits of classical computation. This study introduces a hybrid quantum-classical neural 

network architecture (HQC-Net) for accurate four-class Alzheimer's disease classification, which uses 

quantum processing to detect patterns that are often invisible to classical spatial analysis methods. The 

proposed framework integrates classical feature extractors, including a custom CNN and modified 

ResNet18, with six-qubit variational quantum circuits that employ multiaxis rotation encoding 

(RY→RZ→RX), a quantum Fourier transform for spectral decomposition, and multihead attention for 

effective quantum-classical feature fusion. Comprehensive evaluations were conducted on the Kaggle 

dataset (5,121 samples) and the OASIS dataset (20,000 samples), incorporating realistic quantum noise 

modelling, including depolarising, amplitude damping, and phase damping channels. The modified 

QResNet18 configuration achieved a test accuracy of 99.67%, with perfect discriminative capability 

(AUC = 1.0000) on the OASIS dataset. Quantum processing demonstrated superior detection of very 

mild dementia (99.86% accuracy), which is crucial for early intervention. The proposed approach 

outperformed existing quantum-enhanced methods by 3.57 percentage points while effectively handling 

the increased diagnostic complexity associated with four-class classification. This study demonstrates 

a practical quantum advantage for multiclass neuroimaging classification, achieving superior diagnostic 

accuracy while maintaining computational efficiency and clinical deployment feasibility under current 

Noisy Intermediate-Scale Quantum (NISQ) hardware constraints. 

1. INTRODUCTION 

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia globally, 
affecting more than 55 million people. This number is projected to triple by 2050 due to the global increase in life expectancy 
and the aging population [1]. AD is a progressive condition characterised by a gradual decline in cognitive and behavioral 
functions, including memory, language, executive function, and learning. Symptoms typically manifest after the age of 60, 
although early-onset cases have been observed in individuals in their 40 s and 50 s [2]. The disease generally follows a slow 
and steady progression, starting with mild cognitive impairments that often go unnoticed, eventually leading to significant 
memory loss and a loss of functional independence  [3, 4]. Detecting AD in its early stages is crucial for clinical management, 
as available interventions—whether medical or behavioral—are most effective before extensive neuronal damage occurs. 
Although a cure has not yet been identified, current treatments focus on slowing disease progression  [5, 6]. 

Structural magnetic resonance imaging (MRI) has become the gold standard in clinical practice for visualising disease-
related brain changes, such as hippocampal atrophy and cortical thinning, due to its superior spatial resolution, excellent soft 
tissue contrast, and reduced health risks compared with computed tomography (CT) and positron emission tomography 
(PET) [7, 8] . Despite these advantages, AD presents unique computational challenges due to the morphological similarities 
observed in the early stages [9]. Advances in medical image analysis have significantly accelerated the development of 
computer-aided diagnostic systems [10]. However, translating high-resolution neuroimaging data into reliable diagnostic 
categories remains a formidable technical challenge. Traditional methods often struggle with the complexity and volume of 
brain data, requiring sophisticated computational frameworks to extract meaningful patterns. Deep learning models, 
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particularly convolutional neural networks (CNNs), have shown strong performance in extracting spatial features from 
neuroimaging data. However, their generalizability is often limited by issues such as class imbalance, and overfitting on 
small datasets [11, 12]. To address such fundamental limitations within medical image analysis, hybrid quantum-classical 
models have gained attention as a viable alternative approach. These models deliver richer, more expressive feature 
representations through the application of quantum principles, including superposition, entanglement, and interference [13, 
14]. Quantum-classical approaches strengthen pattern recognition capabilities, especially within neuroimaging contexts, by 
facilitating quantum state manipulation that work alongside classical systems. The integration of quantum modules with 
classical neural networks enables the detection of subtle anatomical variations, especially those that signal early 
neurodegenerative changes. Quantum circuits exploit quantum state superposition to encode classical features within high-
dimensional spaces. 

The urgent need for reliable early detection of Alzheimer's disease (AD), particularly in the subtle transition from mild 
cognitive impairment to early dementia, calls for advanced computational solutions capable of identifying structural 
alterations before irreversible neuronal damage sets in. In response, this study introduces HQC-Net, a novel hybrid quantum-
classical architecture specifically designed for four-class AD classification via structural MRI. The framework integrates 
classical feature extractors with variational quantum circuits, utilising multi-axis encoding and quantum Fourier transform 
(QFT) to detect spectral signatures associated with neurodegenerative progression. This work makes a significant 
contribution to the convergence of quantum computing and medical imaging by presenting a clinically relevant and 
technically robust model that addresses both theoretical and practical challenges in early-stage dementia diagnosis. The key 
contributions of this study are summarised as follows: 

 A hybrid architecture is developed that integrates classical spatial encoders with variational quantum circuits for 
multiclass AD classification. This architecture features dynamic feature bifurcation, preserving both global 
contextual information and quantum-compatible representations. 

 QFT and layered entanglement are employed to enhance feature representation, enabling the detection of global 
periodic patterns in cortical structures that characterise neurodegeneration processes—patterns that are often 
invisible to classical spatial analysis methods. 

 Quantum noise simulation and error mitigation techniques are implemented to improve robustness under realistic 
hardware constraints. This includes detailed modelling of Noisy Intermediate-Scale Quantum (NISQ) devices, 
utilising mixed quantum channels and Richardson extrapolation for validation of practical deployment. 

 A multihead attention mechanism is employed to fuse classical and quantum features into a unified decision space. 
This mechanism allows for the adaptive weighting of complementary quantum-classical strengths, tailored to the 
individual characteristics of each sample and the specific diagnostic requirements. 

The remainder of this paper is structured to provide thorough coverage of the proposed methodology and its validation. 
Section 2 presents related works and current limitations in quantum-enhanced approaches to Alzheimer's disease 
classification. Section 3 details the proposed HQC-Net methodology, including datasets and preprocessing, classical feature 
extraction modules, quantum processing circuits, adaptive fusion mechanisms, and performance evaluation metrics. Section 
4 presents detailed experimental results and a comparative analysis with state-of-the-art approaches, emphasising quantum 
circuit design innovations and their clinical implications. Finally, Section 5 concludes the study and outlines future research 
directions, establishing the foundation for quantum-enhanced medical imaging applications in clinical practice. 

2.  RELATED WORKS 

Recent advancements in deep learning and machine learning have demonstrated significant potential across diverse 
medical imaging applications. These successes motivate continued exploration of deep learning frameworks for specialized 
tasks such as high-fidelity data unlearning [15-17]. In recent years, interest in hybrid quantum-classical machine learning 
models for brain disorder classification by neuroimaging data has increased. These approaches aim to overcome the 
limitations of conventional deep learning methods, particularly in tasks involving Alzheimer's disease (AD) diagnosis and 
staging. Early efforts focused on binary AD classification via structural MRI. In [18-20], variational quantum circuits were 
integrated with classical convolutional neural networks (CNNs), such as ResNet34 and AlexNet. Spatial features were 
extracted from T1-weighted axial or coronal MR images and mapped into quantum states via angle encoding schemes. These 
hybrid models, which were evaluated on simulated quantum back ends, achieved classification accuracies ranging from 95% 
to 97% on two-class datasets. However, their reliance on binary classification limits their clinical applicability, as AD 
progression involves multiple intermediate stages that require precise differentiation for effective treatment planning. 

A more advanced architecture was proposed in [21], which combines vision transformers with variational quantum 
circuits embedded within multihead attention layers. Trained on the Kaggle and OASIS datasets, the model addresses class 
imbalance and interstage similarities by integrating entanglement-based quantum layers. While promising in managing class 
imbalance, the use of fixed quantum circuit templates limits the model's ability to capture the full morphological complexity 
of AD stages, particularly the subtle differences between mild cognitive impairment and early dementia. Multimodal 
neuroimaging approaches have also been explored. In [22], CNN and principal component analysis (PCA) were used to 
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extract MRI features, which were then encoded into quantum states for classification via a quantum support vector machine. 
The model leverages quantum kernels and entangled mappings to improve stagewise differentiation. However, reliance on 
PCA may have discarded essential spatial details required for accurate multiclass discrimination. Functional imaging has 
also been investigated. In [23], a hybrid quantum-classical CNN was applied to resting-state fMRI time series to detect early 
cognitive impairment on the basis of temporal brain dynamics. Similarly, [24] introduced a quantum-inspired model using 
EEG signals and a Goldner–Harary graph-based representation. Frequency-domain features from EEG were used to 
distinguish AD patients from healthy controls. While these functional approaches provide valuable complementary 
information, they require specialised acquisition protocols and extended scanning durations, limiting their practical 
integration compared with structural MRI. 

Despite these new developments, however, several key limitations continue to constrain current quantum-enhanced AD 
classification approaches. First, most studies remain confined to binary or, at best, three-class classification tasks, ignoring 
the clinically relevant four-class staging needed for accurate disease assessment. Second, idealised quantum simulators 
disregard practical hardware limitations, such as quantum noise effects, decoherence, and substandard gate fidelity, which, 
on a large scale, considerably impact performance in realistic settings. Third, the bulk of existing architectures implement 
static quantum circuit layouts that do not exhibit adaptability to dataset variability and class imbalance. Finally, the 
integration of classical and quantum modules tends to oversimplify, restricting the synergy between hybrid systems. These 
drawbacks thus create space, therefore, for more adaptive and resilient quantum-classical models that can scale to handle 
complicated multiclass classification tasks while still being within the limitations enabled by near-term quantum hardware—
an aim targeted by this current work. 

3. THE PROPOSED METHODOLOGY 

This work introduces HQC-Net, a neural architecture that seamlessly integrates classical and quantum components for 
multiclass medical image classification. The proposed framework overcomes the key limitations of conventional deep 
learning techniques by incorporating quantum-enhanced feature transformation and dynamic fusion strategies between 
quantum and classical representations. The architecture consists of four integrated components: (1) a hierarchical module 
for classical feature extraction, (2) a variational quantum circuit for quantum-level encoding, (3) a fusion module that 
adaptively integrates quantum and classical features, and (4) a multiclass classifier capable of distinguishing subtle diagnostic 
categories. The design leverages quantum phenomena such as superposition and entanglement while ensuring compatibility 
with the operational constraints of contemporary NISQ devices. An overview of the proposed HQC-Net architecture is 
presented in Figure. 1. 
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Fig. 1. The proposed model steps 
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3.1  AD Datasets 

This study utilises two publicly available structural MR datasets: the Kaggle Alzheimer's MRI 4-class dataset and the 
Open Access Series of Imaging Studies (OASIS) dataset. These datasets provide complementary anatomical views—coronal 
slices in Kaggle and axial slices in OASIS—across four diagnostic stages of Alzheimer's disease (AD): nondemented (ND), 
very mild dementia (VND), mild dementia (MD), and moderate dementia (MOD). The combined use of these views 
enhances the coverage of key neuropathological features, including hippocampal atrophy and cortical thinning. Fig. 2 shows 
the class distributions within the Kaggle and OASIS datasets, both of which highlight the imbalance in sample counts across 
the four diagnostic stages. Fig. 3 presents representative MR slices selected from each class and dataset, demonstrating the 
anatomical features captured through the coronal and axial views, respectively. These figures collectively reflect the 
diversity, structure, and clinical complexity embedded in the datasets used for training and evaluation. 

 

(A) 

 

(B) 

Fig. 2. Class distribution in the (A) Kaggle dataset and (B) OASIS dataset. 
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Both datasets are publicly accessible online. The Kaggle dataset is available at Alzheimer MRI 4 classes dataset, whereas 
the OASIS dataset can be accessed at OASIS Alzheimer's Detection . 

    

(A) 

    

(B) 

Fig. 3. Representative MRI scans showing: (A) Coronal slices from the Kaggle dataset, and (B) Axial slices from the OASIS dataset. 

3.2 The Preprocessing Steps 

To ensure optimal performance and training efficiency, a comprehensive preprocessing pipeline was implemented for 
the MR images prior to model input. Given the substantial processing overhead of quantum circuit operations—including 
multiaxis state encoding, entanglement generation, and QFT decomposition—this study deliberately adopted a lightweight 
preprocessing strategy to achieve a balance between quantum and classical components while maintaining diagnostic 
accuracy. Images were standardised to 28×28 pixel dimensions to balance efficiency with preservation of critical structural 
features essential for Alzheimer's disease classification. This approach avoided the burden of complex augmentation 
techniques that would compound the already intensive quantum processing requirements. 

Pixel intensity normalisation was applied using a mean of 0.5 and standard deviation of 0.5, scaling values to the [-1, 1] 
range to enhance training stability and convergence behaviour. Advanced data loading optimisation was implemented 
through persistent worker allocation (n=2) and memory pinning strategies, effectively eliminating I/O bottlenecks while 
maintaining the optimal CPU-GPU resource distribution. Dataset partitioning followed an 80/20 training-validation protocol, 
allocating 16,000 training and 4,000 validation samples for OASIS and 5,131 training samples with 1,279 validation samples 
for Kaggle. This systematic preprocessing framework established a robust foundation for efficient model training and reliable 
performance evaluation. 

3.3 The Classical Feature Extraction Stage 

While CNNs effectively extract hierarchical spatial features in medical imaging, their performance in neuroimaging is 
often limited by dataset scarcity and class imbalance [25, 26]. To address these challenges, two separate backbone 
architectures are evaluated: a custom CNN and a modified ResNet18 encoder. Both approaches leverage transfer learning 
principles to maximise feature representation capacity across different scales. 

 Custom CNN 

The CNN backbone processes 28×28 grayscale inputs through three hierarchical tiers with progressive feature map 
expansion (16→32→64 channels). Each tier comprises 3×3 convolutional layers, batch normalisation for training stability, 
ReLU activation for nonlinearity, and max pooling for spatial downsampling. This hierarchical design captures multiscale 

https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset
https://www.kaggle.com/datasets/ninadaithal/imagesoasis
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features from fine-grained textures to global morphological patterns. Following the final convolutional tier, the architecture 
implements feature bifurcation to create parallel streams. The classical pathway applies global average pooling across spatial 
dimensions, producing 64-dimensional feature vectors that preserve global contextual information. Simultaneously, the 
quantum pathway flattens the 3×3×64 feature tensor into 576 dimensions, subsequently applying linear projection to generate 
6-dimensional quantum-compatible encodings optimised for qubit operations, as illustrated in Figure. 4. 

 

Fig. 4. Custom CNN Architecture for Feature Extraction 

 Modified ResNet18 

The ResNet18 backbone incorporates residual learning principles specifically adapted for single-channel medical 
imaging. Key architectural modifications include single-channel input adaptation, a reduced initial kernel size (7×7→3×3) 
to preserve fine spatial details, and elimination of early max pooling to prevent information loss in small-scale inputs. 

The network maintains four residual blocks with systematic channel expansion (64→128→256→512). Each block 
contains dual residual units with identity skip connections that facilitate gradient flow and feature preservation. Global 
average pooling transforms the final feature maps into 512-dimensional vectors, which undergo bifurcation into classical 
(512 dimensions) and quantum (6 dimensions via linear projection) pathways for subsequent operations, as depicted in Fig. 5. 
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Fig. 5. Modified ResNet18 Architecture for Alzheimer's Classification 

3.4 The feature selection stage using the quantum processing module 

Quantum circuits exploit superposition and entanglement to process information in exponentially large state spaces [27], 
offering advantages for pattern recognition in high-dimensional medical data. The quantum module transforms classical 
features through a three-phase pipeline using 6 qubits. These phases include multiaxis rotation encoding, entanglement 
generation, and quantum Fourier transform processing to detect frequency-domain patterns that are not readily captured by 
spatial methods alone. 

 Variational Circuit 

The quantum module, illustrated in Fig. 6, uses 6 qubits to capture complex feature interdependencies: 

 

Fig. 6. Quantum Circuit Variants with Noise and QFT 
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State Preparation Phase: Multiaxis rotation encoding maps 6-dimensional classical features onto quantum states 
through consecutive RY, RZ, and RX operations for each qubit, where rotation angles directly correspond to normalised 
feature values. 

Entanglement Generation Phase: Linear entanglement topology creates quantum correlations through nearest- 
neighbour CNOT gates connecting adjacent qubits sequentially (0→1, 1→2, 2→3, 3→4, 4→5). Parameterised controlled-
RX gates applied to even qubit pairs enable adaptive quantum transformations that learn optimal feature relationships during 
training. 

Frequency Domain Processing Phase: The quantum Fourier transform decomposes quantum states into frequency 
components [28-30],  following a three-stage procedure: Hadamard gates for superposition, controlled-Rk rotations for phase 
relationships, and SWAP operations for qubit reordering. This approach enables frequency-domain analysis of cortical 
features, as shown in Fig. 7. 

 

Fig. 7. Quantum Fourier Transform Implementation 

 Quantum noise modelling and error mitigation 

To ensure NISQ device compatibility [31], the simulation incorporates realistic noise through mixed quantum channels: 
depolarising (probability of 0.01), amplitude damping (0.005), and phase damping (0.01). Richardson extrapolation across 
multiple noise levels [1.0, 1.5, 2.0] provides error mitigation by extrapolating toward noise-free performance. 

3.5 Adaptive Fusion Module 

Attention mechanisms enable dynamic feature weighting in multimodal systems [32], which is particularly critical for 
integrating heterogeneous quantum-classical representations. Multihead attention is employed to harmonise 6-dimensional 
quantum measurements with classical features (64/512 dimensions), projecting them into a unified 64-dimensional decision 
space. 

Feature alignment between quantum and classical modalities occurs through trainable linear layers that map the inputs 
into a shared embedding space. A dual-head attention mechanism is applied, with each head processing a separate 32-
dimensional subspace of the unified space, enabling the model to learn complementary feature relationships in parallel. Each 
attention head computes relevance scores across modalities and applies learned weight matrices to modulate feature 
contributions. 

The outputs of both heads are concatenated and passed through a linear projection layer, producing a final fused 64-
dimensional representation that captures integrated multimodal information. This design extends established attention 
principles in deep learning while addressing the unique challenges of hybrid quantum-classic medical image analysis. 

3.6 Classification and Optimisation Framework 

The final classification stage uses a two-layer network with specialised training strategies for quantum-classical 
parameter optimisation. 

 Classification Network 

The classification network implements a two-stage architecture with hidden layer transformation (64→64 dimensions) 
via ReLU activation and dropout regularisation (probability of 0.3), followed by multinomial classification (64→4 
dimensions) with softmax normalisation for multiclass categorisation, as outlined in Figure. 8. 
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Fig. 8. Feature Fusion to the Classification Pipeline 

 Training strategy 

Training employs the Adam optimiser with adaptive learning rate scheduling (initial learning rate 1 × 10−3, reduction 
factor 0.5, patience 3 epochs). Gradient clipping (threshold of 1.0) ensures stable quantum parameter updates, whereas 
selective L2 regularisation (𝜆 = 1 × 10−4) applies exclusively to classical parameters. The exponential moving average 
(decay factor 𝛼 = 0.999) provides temporal smoothing across heterogeneous parameter spaces, addressing the distinct 
optimisation characteristics of quantum and classical components. All the hyperparameters used in the proposed 
methodology are organised in Table I. 

TABLE I.  TRAINING HYPERPARAMETERS AND CONFIGURATION 

Parameter Value Description 

Optimiser Adam Adaptive learning rate optimisation 

Initial Learning Rate 1 × 10−3 Starting learning rate for all parameters 

Learning Rate Scheduler ReduceLROnPlateau Reduction factor: 0.5, patience: 3 epochs 

Batch Size 32 Training and validation batch size 

Maximum Epochs 50 Training termination criterion 

Dropout Rate 0.3 Regularisation in classification layer 

L2 Regularisation 1 × 10−4 Applied exclusively to classical parameters 

Gradient Clipping 1.0 Threshold for quantum parameter stability 

EMA Decay Factor 0.999 Exponential moving average for smoothing 

Input Resolution 28×28 pixels Standardised image dimensions 

Normalisation Range [-1, 1] Pixel intensity scaling 

Data Workers 2 Persistent workers with memory pinning 

Quantum Qubits 6 Circuit register size 

QFT Implementation Full 6-qubit Hadamard + Controlled-R + SWAP gates 

Noise Simulation Mixed channels Depolarising: 0.01, Amplitude: 0.005, Phase: 0.01 

Error Mitigation Richardson Extrapolation Scaling factors: [1.0, 1.5, 2.0] 

Reset Probability 0.1 Error accumulation prevention 
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Algorithm 1 provides a comprehensive overview of the complete HQC-Net framework, detailing the systematic 
integration of classical feature extraction, quantum processing, attention-based fusion, and optimisation strategies described 
throughout the methodology section. 
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3.7 Performance evaluation 

The evaluation employs multiple complementary metrics to provide a comprehensive assessment of classification 
performance across the four Alzheimer's disease stages: 

1. Overall accuracy: The overall accuracy is the proportion of correctly classified samples across all classes, providing 
a global performance indicator. 

2. Per-class accuracy: The classification accuracy for each individual disease stage, enabling the detection of potential 
biases in model performance across diagnostic categories. 

3. Confusion matrix: A detailed breakdown of predictions versus ground truth, revealing specific misclassification 
patterns that may have clinical significance. This includes an analysis of whether errors occur between adjacent disease 
stages or across disparate categories. 

4. Precision, Recall, and F1-Score: Class-specific metrics that provide complementary perspectives on model 
performance, particularly valuable for imbalanced diagnostic categories: 

   -  Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 - Indicates the reliability of positive predictions 

   - Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 - Indicates the ability to detect all positive cases. 

   - F1-Score = 2 ×
 Precision × Recall 

 Precision + Recall 
 - Harmonic mean of precision and recall. 

5. ROC curves and AUC: Receiver operating characteristic curves and the corresponding area under the curve values 
for each class, including the macroaverage AUC, offering threshold-independent performance assessment. 

6. Precision-Recall Curves and Average Precision: This metric is particularly informative for imbalanced medical 
datasets where minority classes often represent critical diagnostic categories. 

These metrics are computed on the validation set, which serves as the test set to ensure unbiased performance estimation. 
Figure. 9 illustrates the confusion matrix for Alzheimer's disease classification. 

 

Fig. 9. Confusion Matrix for Alzheimer's Disease Classification 
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4. RESULTS AND DISCUSSION 

This section presents a comprehensive evaluation of our proposed hybrid quantum-classical architectures across two 
neuroimaging datasets, emphasising quantum circuit design innovations and their clinical implications for multiclass 
Alzheimer's disease classification. All the experiments were conducted via Google Colab Pro with NVIDIA Tesla V100 
GPUs, and the quantum simulations were performed via PennyLane's default mixed device with realistic noise modelling. 

4.1 Performance Comparison across Architectures 

Table II presents the performance results for all the experimental configurations, revealing important patterns in hybrid 
model behaviour. 

TABLE II.  COMPLETE PERFORMANCE RESULTS OF THE PROPOSED HYBRID ARCHITECTURES 

Architecture Dataset Test Accuracy (%) ROC AUC Macro Avg F1 Weighted Avg F1 Training Time (hrs) 

QCNN Kaggle 95.71 0.9954 0.95 0.96 4.02 

QCNN OASIS 99.58 0.9997 1.00 1.00 14.90 

QResNet18 Kaggle 97.56 0.9969 0.94 0.98 5.55 

QResNet18 OASIS 99.67 1.0000 1.00 1.00 13.18 

 
The results demonstrate substantial variation in performance across different model‒dataset combinations. On the Kaggle 

dataset, the modified QResNet18 achieves superior accuracy (97.56%) compared with the custom QCNN (95.71%), 
reflecting the benefits of deeper feature extraction. However, both models show reduced performance on this smaller, more 
imbalanced dataset compared with the OASIS results. 

The OASIS dataset yields exceptional performance across both architectures. The custom QCNN achieves 99.58% test 
accuracy with a near-perfect AUC (0.9997), whereas the modified QResNet18 achieves the highest overall performance, 
with 99.67% accuracy and perfect discriminative capability (AUC = 1.0000). These results demonstrate the effectiveness of 
quantum-classical hybrid processing when sufficient training diversity is available. 

The AUC values reveal excellent rank-ordering performance across all configurations, ranging from 0.9954--1.0000. The 
modified QResNet18's perfect AUC on OASIS indicates optimal separation between all four diagnostic categories, which is 
crucial for multiclass clinical applications. Even under challenging conditions such as severe class imbalance on Kaggle, 
quantum circuits maintain strong discriminative ability (AUC > 0.995). 

Macroaverage F1 scores demonstrate balanced performance across diagnostic categories. The OASIS configurations 
achieve perfect macro F1 scores (1.00), indicating equal effectiveness across all disease stages. The Kaggle results show 
slightly lower macro F1 values (0.94--0.95) due to class imbalance effects, particularly the underrepresented moderate 
dementia category. The weighted F1 scores consistently match or exceed macro values, confirming robust overall 
classification performance. 

4.2 Training dynamics and computational analysis 

Training efficiency varies significantly across models and datasets, as shown in Table II. On the Kaggle dataset (5,121 
samples), the custom QCNN trains fastest at 4.02 hours because its lightweight 3-layer architecture produces 64-dimensional 
features. The modified QResNet18 requires 5.55 hours, reflecting the computational overhead of its deeper backbone in 
generating 512-dimensional vectors. 

For the OASIS dataset (20,000 samples), the training time increases substantially: the custom QCNN requires 14.90 
hours, whereas the modified QResNet18 needs 13.18 hours. The larger dataset size and quantum circuit processing demands 
explain these extended training periods. Interestingly, modified QResNet18 trains slightly faster than does the QCNN on 
OASIS despite its deeper architecture, suggesting better optimisation efficiency with larger datasets. 

The training behaviours illustrated in Fig. 10 demonstrate the distinct optimisation characteristics typical of quantum–
classical hybrid systems. The custom QCNN model on the Kaggle dataset shows prominent oscillations within the validation 
accuracy between 40% and 95% over the first 20 epochs, as illustrated in Fig. 10a. These oscillations highlight the 
optimisation difficulties experienced while handling highly imbalanced datasets, particularly the fact that only 11 Moderate 
Dementia samples exist. The quantum circuit fails to converge to steady-state parameter settings for this underrepresented 
class, consequently resulting in extensive exploration of the parameter space governed by multiaxis rotational encoding (RY 
→ RZ → RX). Convergence begins to stabilise around epoch 25, as the optimiser identifies parameter settings that facilitate 
consistent classification across all categories despite the inherent data imbalance. 

In contrast, the QCNN trained on the OASIS dataset exhibits considerably smoother convergence across the 50 training 
epochs, as illustrated in Fig. 10b, with the validation accuracy progressively increasing from 60% to 99.38%. This stability 
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stems from the OASIS dataset's richer statistical properties and better class balance across diagnostic categories, enabling 
more consistent training behavior. The modified QResNet18 architecture shows better convergence patterns on both datasets, 
as demonstrated in Figure. 10c and Figure. 10d. This improvement results from its deeper classical backbone, which 
generates higher-quality feature representations and facilitates quantum parameter optimisation despite class imbalance 
challenges. 

 

 
A 

 
B 

 
C 

 
D 

Fig. 10. Training Dynamics and Learning Curves (a) QCNN - Kaggle Dataset: (b) QCNN - OASIS Dataset (c) Modified QResNet18 - 

Kaggle Dataset: (d) Modified QResNet18 - OASIS Dataset. 
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4.3 Discriminative Performance Analysis 

Table III reveals the differential effectiveness of quantum processing across Alzheimer's disease stages, demonstrating 
enhanced discrimination between morphologically similar categories. The performance variations highlight the impact of 
data availability on quantum circuit effectiveness. On Kaggle, the uniform 90.91% accuracy for moderate dementia across 
both architectures demonstrates the remarkable ability of quantum circuits to extract meaningful patterns from severely 
underrepresented classes. This performance validates the robustness of the quantum processing approach in handling natural 
class imbalances and supports the decision to avoid artificial data augmentation or class balancing techniques, allowing the 
model to learn from authentic clinical data distributions. In contrast, the OASIS results demonstrate the quantum processing 
potential when sufficient statistical diversity enables proper state formation, achieving perfect moderate dementia 
classification across all configurations. 

TABLE III.  PER-CLASS ACCURACY COMPARISON 

Method/Dataset 
Non-

Demented 
Moderate Dementia Mild Dementia Very Mild Dementia 

QCNN - Kaggle 94.44% 90.91% 97.46% 93.87% 

QCNN - OASIS 99.16% 100.00% 100.00% 99.65% 

QResNet18 - Kaggle 95.14% 90.91% 98.44% 97.49% 

QResNet18 - OASIS 99.23% 100.00% 100.00% 99.86% 

Table IV displays the overall classification metric results for all stages and datasets, which exhibit clinically significant 
precision-vs-recall trade-offs. On the OASIS dataset, both hybrid models demonstrate a remarkable balance, with precision 
and recall consistently exceeding 0.99, indicating decision stability across all diagnostic stages. However, the Kaggle results 
demonstrate structural variation in addressing class imbalance and limited representation. The modified QResNet18 exhibits 
a discrepancy between precision and recall (precision 0.77, recall 0.91), indicating the impact of combining deeper classical 
feature extraction with quantum circuits. The custom QCNN exhibits optimal precision (1.00) and somewhat lower recall 
(0.91), demonstrating that its combined architecture enables more stable quantum states to be encoded and more conclusive 
predictions. These results demonstrate that while diversity improves performance, hybrid quantum-classical models maintain 
stability across diverse distributions. The ability of these methods to adapt to diverse dataset characteristics while achieving 
clinically significant performance confirms their suitability for practical application in neuroimaging. 

TABLE IV.  DETAILED CLASSIFICATION METRICS 

Kaggle Dataset Performance 

Method Class Precision Recall F1-Score Support 

QCNN 

Non-Demented 0.94 0.94 0.94 144 

Moderate Dementia 1.00 0.91 0.95 11 

Mild Dementia 0.97 0.97 0.97 512 

Very Mild Dementia 0.94 0.94 0.94 359 

Modified QResNet18 

Non-Demented 0.99 0.95 0.97 144 

Moderate Dementia 0.77 0.91 0.83 11 

Mild Dementia 0.98 0.98 0.98 512 

Very Mild Dementia 0.96 0.97 0.97 359 

OASIS Dataset Performance 

Method Class Precision Recall F1-Score Support 

QCNN 

Non-Demented 1.00 0.99 0.99 1429 

Moderate Dementia 1.00 1.00 1.00 90 

Mild Dementia 1.00 1.00 1.00 1046 

Very Mild Dementia 0.99 1.00 0.99 1435 

Modified QResNet18 

Non-Demented 1.00 0.99 1.00 1429 

Moderate Dementia 0.99 1.00 0.99 90 

Mild Dementia 1.00 1.00 1.00 1046 

Very Mild Dementia 1.00 1.00 1.00 1435 

Figure. 11 shows visual evidence of discriminative performance via ROC and precision‒recall (PR) curves across all 
experimental configurations. The curves exhibit steep and well-separated trajectories, indicating strong interclass 
discrimination. PR patterns further demonstrate consistent behaviour across varying decision thresholds, reinforcing the 
robustness of the hybrid architecture. Notably, both the ROC and PR curves retain high discriminative gradients even under 
severe class imbalance, supporting threshold-independent reliability—an essential feature for deployment in diverse clinical 
settings. 



 

 

 

 

Radhi et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 156–177 
 

171 

 
A 

 
B 

 
C 

 
D 

Fig. 11. ROC and Precision-Recall Analysis (a) QCNN - Kaggle (b) QCNN - OASIS (c) Modified QResNet18 - Kaggle (d) Modified 

QResNet18 - OASIS. 
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Figure. 12 provides detailed insight into misclassification patterns through confusion matrix analysis across all 
experimental configurations. The matrices reveal distinct error distributions between datasets, with OASIS configurations 
demonstrating superior classification accuracy, as evidenced by stronger diagonal concentration, whereas Kaggle matrices 
show increased off-diagonal elements reflecting the challenging data conditions. These visual patterns confirm the 
quantitative results presented in Tables II and IV, providing matrix-level validation of the performance differences observed 
across the experimental configurations. 

 

 

Fig. 12. Confusion matrices for classification analysis (a) QCNN – Kaggle (b) Modified QResNet18 - Kaggle (c) QCNN - OASIS (d) Modified 

QResNet18 - OASIS 

Figure. 13 shows the classification accuracy across disease stages via class-specific bar charts. The visualisations provide 
clear visual evidence of performance consistency within each dataset, with OASIS configurations showing uniformly high 
accuracy bars across all diagnostic categories, whereas Kaggle configurations display greater height variation between 
disease stages. 

Both hybrid architectures demonstrate measurable accuracy levels across the diagnostic spectrum, with Modified 
QResNet18 generally achieving higher bar heights than Custom QCNN on both datasets. The visual comparison between 
datasets reinforces the performance patterns observed throughout the experimental evaluation, providing graphical 
confirmation of the models' comparative effectiveness across different data conditions. 
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Fig. 13. Per-class accuracy visualisation (a) QCNN - Kaggle (b) QCNN - OASIS (c) Modified QResNet18 - Kaggle (d) Modified QResNet18 - OASIS 

4.4 Quantum Processing Performance Analysis 

The validation of the quantum processing illustrates specific computational benefits that warrant the hybrid method 
beyond mere performance metrics. The preservation of discriminative capability by the quantum circuit using sparse training 
samples provides an intrinsic advantage that quantum state superposition offers towards managing sparse clinical 
information—a typical problem in rare disease diagnoses where sample collection is inherently difficult. 

The multiaxis rotation encoding is particularly valuable for registering complex morphological relationships that may 
become computationally expensive to represent explicitly via traditional methods. The state space of quantum states allows 
simultaneous encoding of multiple anatomical perspectives of anatomy and consequently recognition of faint correlations 
between features that improve diagnostic accuracy without requiring extensive classical feature engineering. 

The QFT component provides computational speedup on typical frequency-domain analysis via classic Fourier methods, 
particularly when handling large medical image datasets. Such quantum processing among frequencies serves to detect 
predictive patterns of early neurodegeneration that exist among periodic brain structures—patterns that classic spatial 
analyses might require many additional computations to recognise consistently. 

The confirmation of noise resilience confirms that quantum processing still has computational strengths within realistic 
hardware limitations, supporting the practical viability of quantum-enhanced medical imaging systems as quantum 
technology has developed further. 

4.5 Feature Fusion and Multihead Attention Mechanisms 

The consistently high performance achieved across a range of dataset characteristics and architectural conditions 
validates the effectiveness of the multihead attention fusion strategy employed by the hybrid model. The attention 
mechanism's ability to adaptively weight classical and quantum features emerges as a key rationale behind the identified 
robustness, which stands evident within the retention of strong performance by the model despite significant variations in 
data distribution and imaging perspectives. 
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The dual-head architecture's success in achieving balanced performance by diagnostic class manifests its capacity to 
manage the inherent challenge of incorporating heterogeneous features. Compared with fixed combination approaches that 
apply fixed combination rules, the learned attention weights obtain dynamic flexibility to adjust to the particular traits of 
each example, which explains the improved discriminative power evident from the experimental results. This adaptive 
capability is particularly valuable in clinical scenarios where the relative importance of spatial and frequency-domain features 
may vary with disease presentation and imaging conditions. 

The attention-based combination mechanism additionally facilitates the computational efficiency of the model by 
focusing processing resources on the most diagnostically relevant feature combinations for each case. This targeted approach 
helps explain the maintained performance quality even when transitioning between different classical backbone 
architectures, as the attention mechanism can adapt to varying feature dimensionalities while preserving essential 
discriminative information. 

Furthermore, the consistent performance across both the coronal and axial imaging orientations suggests that the attention 
mechanism successfully identifies and emphasises the most informative features regardless of the anatomical perspective. 
This orientation-independent effectiveness supports the practical deployment potential of the hybrid approach across diverse 
clinical imaging protocols and equipment configurations. 

4.6 Comparative Analysis and Scientific Advancement 

The experimental results position the proposed approach among the leading quantum-enhanced medical imaging 
methods. Table V shows that the modified QResNet18 achieves 99.67% accuracy on OASIS, substantially outperforming 
previous quantum-enhanced approaches: 15.37 percentage points over ViT-based methods [21] and 3.57 percentage points 
over CNN-QSVM approaches [22] for 4-class diagnostic tasks. The performance gains stem from key architectural 
innovations validated by the experimental results: feature preservation strategies, enhanced quantum encoding approaches, 
and adaptive fusion mechanisms. These design choices enable the detection of complex morphological patterns while 
maintaining practical computational requirements for clinical deployment. 

The maintained performance under realistic NISQ noise conditions (>99% accuracy with comprehensive error 
modelling) demonstrates deployment readiness superior to previous simulation-only validations. The robust 4-class 
diagnostic capability addresses clinical staging requirements that binary classification approaches cannot fulfil, providing 
practical advancements for real-world neuroimaging applications where accurate disease progression assessment is essential 
for treatment planning. The results validate the quantum frequency-domain processing approach for medical imaging, 
demonstrating that quantum circuits can provide tangible computational advantages in pattern recognition tasks. The 
integrated methodology establishes a foundation for quantum-enhanced medical imaging systems that can operate effectively 
within current technological constraints while providing clinically meaningful diagnostic improvements. 

TABLE V.  COMPARATIVE PERFORMANCE OF HYBRID QUANTUM–CLASSICAL ALZHEIMER’S CLASSIFICATION METHODS ON MRI 

Study Year Dataset Size Architecture Task 
Accuracy 

(%) 
Precision Recall 

F1-

Score 
AUC 

QCNN – Kaggle 2025 5 121 (Kaggle) 
6-qubit QCNN + 

QFT 

4-

Class 
95.71 0.95 0.95 0.95 0.9954 

QCNN – OASIS 2025 20 000 (OASIS) 
6-qubit QCNN + 

QFT 
4-

Class 
99.58 1.00 1.00 1.00 0.9997 

Modified 

QResNet18 – 

Kaggle 

2025 5 121 (Kaggle) 
6-qubit QResNet18 

+ QFT 

4-

Class 
97.56 0.94 0.94 0.94 0.9969 

Modified 

QResNet18 – 

OASIS 

2025 20 000 (OASIS) 
6-qubit QResNet18 

+ QFT 
4-

Class 
99.67 1.00 1.00 1.00 1.0000 

[33] 2022 
6 400 (balanced 

binary) 

ResNet34 → 4-qubit 

VQC 

2-

Class 
97.20 0.972 0.972 0.972 – 

[19] 2023 
5 438 (ADNI; 

binary) 
ResNet18 → 4-qubit 

VQC 
2-

Class 
97.50 – – – – 

[20] 2023 
6 400 (ADNI/PPMI; 

binary) 

AlexNet → 4-qubit 

VQC 

2-

Class 
96 – – – – 

[21] 2024 
40 384 (Kaggle; 4-

Class MRI) 
ViT + 4-qubit VQC 

4-
Class 

84.3 – – – 0.8667 

[22] 2024 
≈ 50 000 (ADNI + 

NIFD) 

CNN + PCA → 8-

qubit QSVM 

4-

Class 
96.1 – – – – 
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4.7 Clinical Implications and Deployment Considerations 

The exceptional very mild dementia detection accuracy (99.86% on OASIS by modified QResNet18) addresses critical 
clinical needs for early intervention capabilities. The quantum frequency-domain processing paradigm showed remarkable 
performance in early-stage classification tasks, achieving very good accuracy on very mild dementia detection. While such 
results suggest clinical promise, validation in real clinical settings and comparison with current diagnostic protocols are 
needed to establish clinical utility. The multiprotocol versatility exhibited through coronal (Kaggle) and axial (OASIS) 
orientations provides real-world deployment flexibility through a variety of clinical imaging contexts. Axial slices performed 
better than coronal slices did, which contradicts typical clinical protocols when examining the hippocampus. This finding 
indicates that quantum processing can identify useful patterns in the global brain structure that traditional spatial methods 
overlook. From a computational efficiency viewpoint, the custom QCNN trains on the Kaggle dataset within just 4.02 hours; 
thus, this approach can provide limited computing resources to hospitals. For research purposes, where maximum accuracy 
is essential, the modified QResNet18 has better diagnostic capability. 

4.8 Technical limitations and future directions 

The use of low-resolution inputs (28×28 pixels) throughout the experiments was a deliberate trade-off to reduce 
computational demands and facilitate real-time simulation of quantum components. While this resolution retains key 
structural features for Alzheimer’s classification, it may overlook subtle anatomical patterns associated with the earliest 
stages of the disease. Additionally, despite incorporating realistic quantum noise models, simulation-based validation cannot 
fully replicate the hardware limitations of existing quantum processors, such as short coherence times, limited qubit 
connectivity, and gate errors. The current six-qubit configuration represents a practical upper bound for NISQ-era hardware, 
where noise accumulation and hardware fragility present significant challenges for deeper or wider circuits. Consequently, 
near-term hybrid architectures are expected to rely primarily on classical feature extraction, with quantum components 
playing a constrained but complementary role. 

Future implementations should focus on architectural optimisation, simplified variational circuits, and qubit-efficient 
encoding schemes tailored to available hardware platforms. Validation on publicly accessible quantum processors under real 
noise conditions and hardware constraints will be a crucial step toward deployment. Furthermore, the framework could be 
extended to other clinical domains where frequency-domain signatures, amplified by quantum processing, may offer 
diagnostic value—such as in Parkinson’s disease or early cognitive impairment. While broader deployment remains 
contingent on hardware advancements, this study provides a solid foundation for the further development of quantum-
assisted medical imaging systems. By explicitly modelling realistic quantum noise and constraining circuit depth, this work 
supports practical experimentation that aligns with current technological limitations. 

5. Conclusion 

This study introduces HQC-Net, a hybrid quantum- classical framework for multistage Alzheimer’s disease classification 
via structural MRI. By combining classical convolutional encoders with quantum Fourier-based processing and adaptive 
attention fusion, the model effectively captures both spatial and frequency-domain features essential for early-stage 
differentiation. The proposed approach achieved superior accuracy across two benchmark datasets, notably identifying very 
mild dementia with 99.86% accuracy, which is critical for timely intervention. The integration of quantum encoding and 
frequency-domain analysis provided tangible diagnostic benefits, particularly in distinguishing morphologically similar 
stages. Additionally, the model demonstrated adaptability to dataset heterogeneity and clinically relevant imaging variations 
while remaining computationally feasible on standard resources. Future work may explore simplified implementations on 
real quantum hardware, optimise the quantum circuit architecture for current NISQ limitations, and examine generalizability 
across other neurodegenerative conditions. Overall, this work establishes a practical and theoretically grounded foundation 
for quantum-assisted neuroimaging, highlighting its emerging role in advancing early diagnostic precision. Future studies 
could further benefit from the use of explainable AI or quantum techniques combined with optimisation methods for feature 
selection, such as quantum gray wolf optimisation or crow swarm optimisation. 
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