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A B S T R A C T 
Diabetes mellitus (DM) continues to escalate as a worldwide health emergency issue, with approximately 

537 million adults currently diagnosed and forecasts estimating a further increase to 643 million by 2030. 

Early and precise foretelling of DM remains a decisive factor for timely intervention, thereby mitigating 

severe downstream sequelae such as cardiovascular disease, peripheral neuropathy, and diabetic 

retinopathy (DR). Conventional prognostic frameworks typically depend on exclusively either structured 

tabular measurements or visual medical imagery, which constrains comprehensive diagnostic capacity. 

This contribution confronts such limitation by advancing a hybrid machine learning (ML) methodology 

that synergistically combines deep learning—specifically, convolutional neural networks (CNNs) 

dedicated to retinal photograph scrutiny—with gradient-boosting machines (GBMs) that ingest 

structured demographic and clinical variables. Two publicly accessible repositories supplied training 

material: the Pima Indians Diabetes Database for tabular covariates and the Asia Pacific Tele-

Ophthalmology Society (APTOS 2019) Blindness Detection corpus for fundus imagery. Retinal studies 

underwent standardised pre-processing re-scaling, pixel normalisation, Gaussian denoising, and 

multiplicative augmentation while tabular patient records underwent rigorous feature ranking. Outcome 

representations from both data strata were concatenated into a consolidated tensor, thereby rendering 

simultaneous latent-space learning achievable. The experimental results demonstrate that the hybrid 

model outperforms single-modality models, achieving an accuracy of 96%, a macro average F1 score of 

0.96, and an area under the receiver operating characteristic curve (AUC-ROC) of 0.994. The proposed 

approach offers a comprehensive diagnostic framework by combining systemic and localized disease 

indicators, thereby enhancing robustness, reducing variance, and supporting more informed clinical 

decision-making. This work highlights the potential of multimodal ML integration for complex disease 

prediction and sets the stage for future extensions to other chronic conditions.

 

1.  INTRODUCTION 

   Diabetes mellitus (DM) is a chronic metabolic disorder that presents with chronically elevated blood glucose levels; if left 

untreated, DM can lead to serious complications such as cardiovascular disease, peripheral neuropathy, and diabetic 

retinopathy (DR)[1] . As estimated by the International Diabetes Federation (IDF), approximately 537 million adults are 

currently living with DM, and this number is expected to reach 643 million in 2030, representing an increasing public health 

and economic burden worldwide [2]. Hence, early recognition of the disease and its risk stratification are necessary to avoid 

advancement of the condition and provide better outcomes [3, 4]. 

Standard diagnostic practice is largely dependent on laboratory markers such as plasma glucose and HbA1c, which still 

play key roles in clinical decision-making [5]. Simultaneously, improvements in retinal imaging are also allowing earlier 

detection of DR-associated microvascular changes, often long before recognizable symptoms are detected, or potential 

intervention is necessary[6]. Specifically, retinal fundus photography can detect changes in the microvasculature that herald 

the development of the disease process of diabetes even when patients are asymptomatic [7]. These observations motivate 

the inclusion of both systemic and localized indicators as well as mechanisms in predictive frameworks for DM. 

Moreover, extracting reliable knowledge from heterogeneous data poses nontrivial challenges. Machine learning (ML) 

methods have demonstrated strong performance in medical prediction tasks and screening workflows [8-11], yet many 

models are designed around a single modality—either structured numerical variables or medical images—thereby capturing 
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only part of the underlying pathophysiology. Integrating disparate modalities introduces issues of feature fusion, 

preprocessing compatibility, and generalizability across populations. Prior investigations suggest that combining 

complementary information sources can increase robustness and accuracy when properly unified within a single learning 

pipeline [12]. 

In this context, the present study proposes a hybrid ML approach that processes retinal images and structured numerical 

patient variables concurrently. Convolutional neural networks (CNNs) are employed to learn discriminative visual 

representations from retinal images, whereas gradient boosting machines (GBMs) model nonlinear relationships among 

demographic and clinical measurements. By concatenating modality-specific feature vectors into a unified representation, 

the framework aims to uncover patterns that may remain latent when either modality is considered in isolation. The ensuing 

evaluation examines predictive performance via accuracy, precision, recall, the F1 score, and the area under the receiver 

operating characteristic curve (AUC-ROC) and analyses the contribution of each modality within the integrated setting. 

This work addresses a key gap in DM prediction by bridging systemic and localized indicators within a single, 

multimodal model. Beyond performance gains, such integration aspires to support clinical decision-making with richer, more 

contextualized evidence, potentially enabling earlier intervention and improved outcomes. The following sections detail 

related studies, the proposed methodology for data preprocessing, feature fusion and model construction, and a 

comprehensive analysis of the results and implications. 

The aims of this study are as follows: (1) A hybrid model that employs a powerful and effective feature fusion of image 

and numerical features to perform prediction on diabetes images; (2) a performance evaluation of the model is conducted 

through several statistical and classification assessment metrics; and (3) a comparative analysis involving several 

experiments of the proposed model against various unimodal and multimodal models establishes the relative benefits of 

combining image and numerical features via the proposed level of modelling. Additionally, this study will attempt to address 

two further research questions: What is the effect of multimodal integration on predictive accuracy compared with unimodal 

approaches? Which feature combination strategies lead to the greatest performance improvements? 

This work is important because it contributes to the development of predictive healthcare analytics. This finding not only 

highlights the importance of multimodal learning in practical medical applications but also shows that hybrid architectures 

can provide a useful alternative to conventional single-modality models. In addition, the results may help shape the basis of 

clinical decision-support systems to support clinicians in early diagnosis, personalized planning of treatment, and long-term 

management of the disease. 

2. RELATED WORKS 

Over the past few years, the capabilities of a variety of machine learning (ML) and deep learning (DL) tools have 

facilitated the creation of data fusion-based predictive models of diabetes that incorporate several data modalities and 

algorithms. Recent interest in hybrid architectures arises from the inability of single-modality methods to capture a 

comprehensive picture for diagnosis. The use of image-derived features in combination with structured patient data has been 

investigated in various studies to facilitate diabetes risk prediction. For example, Yao et al. developed the ‘SynthA1c’ method 

in [13], which integrates the CT scan phenotype and physical examination data via neural networks and decision tree models 

to predict bloodless HbA1c levels, with up to 87.6% sensitivity. Although this highlights the potential of multimodal 

synergies, the fusion of retinal images with systemic variables was not adequately evaluated as part of an ophthalmic-based 

predictive framework. 
In addition to multimodal fusion, a variety of hybrid ML methods have been developed for structured datasets utilizing 

both ensemble and dimensionality reduction strategies. Sampath, et al. [14] used the synthetic minority oversampling 
technique (SMOTE) along with ensemble classifiers, which gave them a balanced class, and they were able to achieve 
94.12% accuracy on the NHANES data and 89.47% accuracy on the PIMA Indian data. Similarly, Bülbül [15] combined 
genetic algorithms with stacked autoencoders and Softmax classifiers, reaching an accuracy of 98.72%. Poornima [16] 
applied random projection for dimensionality reduction, followed by a hybrid classification pipeline, resulting in improved 
sensitivity (0.95), specificity (0.98), accuracy (0.97), and AUC (0.97). Abnoosian, et al. [17] reported that bagging, boosting, 
and stacking outperform single classifiers, achieving an AUC of 0.999, whereas Liu, et al. [18] integrated unsupervised 
clustering with supervised classifiers to enhance pattern discovery, reporting accuracy above 99%. Further evidence from 
Hasan, et al. [19] and Dutta, et al. [20] confirmed that ensemble methods yield more robust predictions, with Dutta et al. 
demonstrating notable improvements through weighted ensemble learning. Despite these advances, such methods have been 
largely confined to structured data, overlooking the potential of visual biomarkers such as retinal images. 

Concurrently, DL-based methods have achieved significant success in diabetic retinopathy (DR) detection from retinal 
images. Bhimavarapu and Battineni [21] improved CNN efficiency through optimized activation functions, delivering 
superior DR classification results. Gulshan, et al. [22] trained a deep CNN on a large, multiethnic dataset, achieving 90.3% 
sensitivity and 98.1% specificity, whereas Pratt, et al. [23] reported 75% accuracy in DR severity classification. The Kaggle 
DR competition [24] further demonstrated the capability of CNN-based solutions, with AUC-ROC scores ranging from 0.85-
-0.9. Moustari, et al. [25] proposed a two-branch attention-guided CNN architecture, reaching an AUC of 0.998, and Lam, 



 

 

213 Abdalrada et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 211–221 

 

et al. [26] combined multiple CNN architectures to improve DR classification, with an AUC of 0.97. Additionally, 
Rajalakshmi, et al. [27] developed a mobile-based DR detection system that achieved high sensitivity (95.8%) and moderate 
specificity (80.2%). These studies highlight the impressive performance of image-based models, but they generally lack 
integration with systemic variables, which could improve diagnostic completeness. 

Overall, existing research has demonstrated strong predictive ability when focusing on either image-based or numerical-
data-based approaches. However, multimodal learning—particularly the combination of DR-related visual indicators with 
systemic patient data—remains underutilized. Most ensemble and hybrid methods emphasize tabular datasets, whereas 
image-based DL methods omit complementary systemic risk factors. This gap underscores the need for predictive 
frameworks that jointly leverage both modalities, aiming to increase accuracy, robustness, and clinical relevance. 

To provide a concise comparative overview, Table 1 summarizes the main characteristics, methodologies, datasets, 
performance metrics, and limitations of the reviewed studies, highlighting the distinctions and research gaps that motivate 
the present work. 

TABLE I. SUMMARY AND COMPARISON OF REVIEWED STUDIES 

Study Data type(s) Method(s) Dataset(s) Best metric(s) Limitations 

Yao, et al. [13] CT images + 
physical data 

Neural networks + 
decision trees 

Clinical CT + 
exam data 

Sensitivity = 87.6% No retinal images, 
limited modality fusion 

Sampath, et al. [14] Numerical SMOTE + ensemble ML NHANES, 

PIMA 

Acc. 94.12%, 89.47% No image data 

Bülbül [15] Numerical Genetic algorithm + 
stacked AE + Softmax 

Clinical tabular Acc. 98.72% No multimodal inputs 

Poornima [16] Numerical RP + hybrid classifiers UCI diabetes Sens. 0.95, Spec. 0.98, 

Acc. 0.97, AUC 0.97 

No image features 

Abnoosian, et al. 
[17] 

Numerical Ensemble (bagging, 
boosting, stacking) 

Multiple 
diabetes datasets 

AUC 0.999 No visual biomarkers 

Liu, et al. [18] Numerical Unsupervised clustering + 

supervised learning 

Clinical tabular Acc. >99% No multimodal fusion 

Hasan, et al. [19] Numerical Ensemble ML Multiple 
datasets 

Improved AUC No image features 

Dutta, et al. [20] Numerical Weighted ensemble Clinical tabular Significant metric gain No visual biomarkers 

Bhimavarapu and 

Battineni [21] 

Retinal images CNN with enhanced 

activation 

Kaggle DR High DR classification 

perf. 

No systemic data 

Gulshan, et al. [22] Retinal images Deep CNN Large 

multiethnic 

Sens. 90.3%, Spec. 

98.1% 

No multimodal features 

Pratt, et al. [23] Retinal images CNN DR datasets Acc. 75% Limited performance 

Kaggle comp. [24] Retinal images CNN variants APTOS DR AUC 0.85–0.9 No systemic data 

Moustari, et al. [25] Retinal images AG-CNN APTOS DR Acc. 0.9848, AUC 0.998 No systemic data 

Lam, et al. [26] Retinal images CNN ensemble DR datasets AUC 0.97 No multimodal fusion 

Rajalakshmi, et al. 

[27] 

Retinal images Mobile DL Fundus photos Sens. 95.8%, Spec. 

80.2% 

Limited computational 

depth 

3. PROPOSED MODEL 

This section illustrates the proposed model for the prediction of diabetes disease incidence. Figure 1 illustrates the overall 
architecture of the proposed hybrid machine learning framework, highlighting the sequential stages from dataset description 
through preprocessing and feature concatenation to the final hybrid model and performance evaluation metrics. 
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 Figure 1. Workflow of the proposed hybrid machine learning framework for diabetes prediction, which integrates retinal image features with 

numerical patient data. 

The proposed model is a hybrid machine learning framework designed to predict diabetes by integrating both image and 
numerical data. This model leverages the strengths of convolutional neural networks (CNNs) for image analysis and gradient 
boosting machines (GBMs) for numerical data processing. The integration aims to provide a more comprehensive 
understanding of the factors contributing to diabetes prediction. 

3.1 Dataset 

Owing to the lack of a comprehensive diabetes dataset, for this study, two different datasets were employed. The Pima 
Indians Diabetes Database was chosen for the numerical dataset, which has information regarding the population of Pima 
Indians, which is a group of Native Indians in a specific region of Arizona, USA, and their potential risk of developing 
diabetes[28]. The dataset includes several medical and demographic factors, such as age, BMI, blood pressure, and glucose 
level, along with the determination of whether a person developed diabetes within 5 years of the initial examination. As 
shown in Table 2. 
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The dataset generated by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) is expected to 
be used within machine learning and data mining fields; indeed, this database is mostly used as a benchmark dataset for 
diabetes predictive models. It contains 768 observations with 8 variables. 

TABLE II. PRESENT THE DATASET 

variables Description 

Pregnancies (preg) “number of times pregnant” 

Glucose(plas) “plasma glucose concentration after 2 hours in an oral glucose tolerance test” 

BloodPressure(pres) “diastolic blood pressure (mm Hg)” 

SkinThickness(skin) “triceps skin fold thickness (mm)” 

Insulin(insu) “2-hour serum insulin (mu U/ml)” 

BMI(mass) “body mass index (weight in kg/(height in m)^2)” 

DiabetesPedigreeFunction(pedi) “diabetes pedigree function (a function which scores the likelihood of diabetes based on family 

history)” 

Age(age) “age in years” 

The target variable is Outcome, which indicates whether or not an individual developed diabetes within 5 years of the initial examination (0 = no 

diabetes, 1 = diabetes). 

 
For the image data in this model, we used datasets such as retinal images for diabetic retinopathy detection from the 

APTOS 2019 Blindness Detection Dataset [29]. This dataset is part of a Kaggle competition and contains high-resolution 
images of retinas taken under a variety of imaging conditions. The goal is to predict the presence and severity of diabetic 
retinopathy. Over 3500 images labelled with different levels of diabetic retinopathy severity, No DR (0), Mild DR (1), 
Moderate DR (2), Severe DR (3), and Proliferative DR (4), are included, as shown in Figure 2. In this study, only 10000 
images were used after augmentation. 
 

    
 (No DR)   (Mild)  (Moderate)  (Severe)  (Proliferative DR) 

Fig. 2. Levels of diabetic retinopathy 

3.2 Preprocessing Steps 

In the integrated model that uses both image and numerical data for diabetic disease classification, preprocessing image 
data is crucial for ensuring that the images are in a suitable format and quality for the model to effectively learn patterns and 
make accurate predictions. The preprocessing steps help standardize the images, enhance important features, and reduce 
computational complexity. Image resizing is applied to ensure that all the input images have the same dimensions, which is 
necessary for batch processing in deep learning models. In this model, images are resized to a fixed size (e.g., 128x128 
pixels). Normalization was also employed to scale the pixel values to a range that is suitable for the neural network. Typically, 
pixel values are normalized to a range of [0, 1] or [-1, 1]. This is achieved by dividing the pixel values by 255 (if the range 
is [0, 255]) to normalize them between [0, 1]. Data augmentation is a process of applying random heat transformations to 
artificially increase the diversity of training dataset. This mitigates the overfitting and increases the generalizability of the 
model. Some of the images were converted to grayscale through a process called grayscale conversion. Noise, which was 
identified as the potential noise in image that effects the important features of the image generating poor performance of 
model, was reduced by implementing a Gaussian filter that smooths the image. Gaussian filter was used to attenuate the 
high-frequency noise and highlights the features appearing in the retinal images. The implementation of the filter was done 
using OpenCV in Python with the cv2 function. GaussianBlur(). A kernel size of (5, 5) and a sigma of 1.0 were used as the 
parameters. The setting you have chosen made the filter to gently smooth the images but keeping the important structures 
like blood vessels and lesions [1]. The Gaussian filter increased the robustness of CNN by maintaining the uniformity of 
input. 

 

3.3 Concatenating Feature Vectors 

Feature vectors are numeric representations of data, and concatenating them involves combining these vectors into a 
single unified representation. This unified vector can then be fed into subsequent layers of the hybrid model for prediction. 
The process works as follows: 
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3.3.1  Feature Vector Extraction 

 From Numeric Data: 

After processing the numeric data via RF feature selection, the output is typically a 1D feature vector. For 

example, if there are 10 numeric features (e.g., age, BMI, blood pressure), the numeric model might output a 

feature vector of size n, such as [f1,f2...,fn] 

 From image data: 

The convolutional neural network (CNN) processes the image and produces a high-dimensional feature map (e.g., 

a 3D tensor). This feature map is flattened into a 1D vector via techniques such as global average pooling (GAP), 

max pooling, or fully connected layers. For example, a CNN might output a vector of size m, such as 

[g1,g2...,gm] 

3.3.2   Aligning feature dimensions 

Feature dimension alignment is a crucial task whenever we have models working on different types of data (e.g., numerical and 

image data). It ensures the input data has uniformity and is compatible with the model for processes. Mismatched feature 

dimensions can lead to errors, non-optimal training or convergence failures. 

3.3.3  Concatenation process 

Once the feature vectors are prepared, they are concatenated along the feature axis. Suppose that the numeric feature 
vector is Fnum= [f1, f2...,fn] of size n and that the image feature vector is Fimg=[g1,g2...,gm] of size m. The concatenated 
feature vector FconcatF  is formed as Fconcat=[f1,f2...,fn,g1,g2...,gm]. The resulting vector has a size of n+ m. 

3.4 Model Construction 

The CNN model is designed to extract features from retinal images. It consists of several convolutional layers followed 
by max pooling layers to capture spatial hierarchies in the image data. The architecture of the CNN employed in this model 
consists of four convolutional layers, and each layer has a 3×3 kernel and ReLU activation functions. After each two 
convolutional layers, MaxPooling layers with a 2×2 window were applied. This is done to reduce the spatial dimensions. All 
the features are extracted after passing through fully connected layers. Those layers are 128 and 64 neurons, respectively, 
followed by ReLU activation. A sigmoid activation function was used at the end to the output layer for classification. 
Moreover, a dropout rate of 0.3 and L2 regularization (λ = 0.0001) were also used to avoid overfitting and improve the 
generalizability. The CNN was also configured with the Adam optimizer with a learning rate of 0.001. For the loss function, 
binary cross-entropy was used, which is appropriate for the binary classification task of diabetes prediction. In the 
convolutional and dense layers, ReLU activation functions were applied, whereas in the final output layer, sigmoid activation 
was applied. Dropout with a rate of 0.3 is used after dense layers, as well as L2 regularization with a coefficient of 0.0001. 
Those configurations were applied to avoid overfitting. The model was trained for 60 epochs with a batch size of 32, using 
early stopping with a patience of 7 epochs to halt training when the validation performance stopped improving. The extracted 
features are flattened and passed through fully connected layers to generate a feature vector that represents the image data. 
The GBM model is used to analyse the numerical data. It applies an ensemble learning technique that builds a sequence of 
decision trees, where each tree corrects the errors of the previous tree. The model assigns different weights to numerical 
features to optimize the predictive performance. 

The feature vectors from both the CNN and GBM models are concatenated to form a unified feature representation. A 
fully connected layer processes the combined features, enabling the model to learn interactions between image and numerical 
data. The proposed model is designed to integrate both image and numerical data concurrently for optimal performance. 
However, it can still function if only one type of data (either numerical or image) is provided; however, with some limitations, 
if only image data are loaded, the model relies solely on the image processing branch (the CNN). The numerical data 
processing branch will essentially be bypassed, or its input will be set to default or null values. The classification accuracy 
may decrease compared with that of the integrated model since the model cannot leverage additional insights from numerical 
data. It performs similarly to a traditional CNN-based model that only processes images. 

When only numerical data are provided, the model uses the fully connected neural network (FCNN) branch to process 
these inputs. The image processing branch will be inactive, or its input will be omitted. The model functions like a typical 
neural network designed for tabular data. The prediction accuracy may be inferior to that of the integrated model since the 
pairwise integrated model has a visual context with retinal images. To keep the model constitutional for only one typology 
of data, some adaptations can be made — for example, the architecture can be adjusted dynamically on the basis of the 
typology of data available through conditional logic. One should also note when training the model that it should be able to 
function when only one part of the data is provided, possibly with some submodels or imputation for missing data. This 
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flexibility can be useful in practice when not all the data may be absorbed. In some instances, for instance, we may only get 
numerical data, and no imaging data, as we do not have an imaging apparatus, and the other way around. 

 

3.5 Performance Metrics 

The quantitative evaluation of the proposed hybrid model is based on some relevant metrics widely used for assessing 
the performance of machine learning classifiers, in particular in the field of medical image analysis and diagnostic prediction 
systems. These metrics give complementary insights around the prediction capabilities of the model (accuracy, precision, 
recall or sensitivity, specificity, and F1 score) so that we do not define ourselves using a unique metric. These metrics tell 
you how well the classifier worked overall and how well it does on a per-class basis, etc. 

Accuracy is the first metric that determines how correct the model is overall by measuring the ratio of correctly classified 
instances (both positive and negative) to the total number of predictions. Although the most obvious performance measure 
is usually accuracy, in the case of medical data, where a highly unequal distribution of classes may be observed (i.e., one 
diagnostic class is very frequent, while the other is very rare), it may not be a good indicator. As a result, accuracy is evaluated 
in conjunction with various other discriminative metrics. 

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1). 

 
where \(TP \) denotes true positives; (TN \) denotes true negatives; (FP \) denotes false positives; and \(FN \) denotes 

false negatives. 
Precision quantifies the proportion of predicted positive cases that are truly positive, providing a measure of the model’s 

reliability when it asserts the presence of a condition (e.g., diabetic retinopathy). High precision indicates a low rate of false 
positives, which is critical in healthcare settings to avoid unnecessary interventions or follow-up procedures. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2). 

 
Recall (sensitivity) measures the proportion of actual positive cases that are correctly identified by the model. In clinical 

diagnostics, a high recall value is essential because it reflects the system’s ability to capture as many true cases as possible, 
thereby reducing the likelihood of missing patients who genuinely require treatment. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3). 

 
The F1 score harmonizes precision and recall into a single measure by computing their harmonic mean. This metric is 

particularly valuable when there is an uneven distribution of classes, as it balances the trade-off between capturing true 
positives and avoiding false positives. 

F1 − score =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
∗ 2  (4). 

 
Finally, the performance of the model on the test dataset is evaluated via the receiver operating characteristic curve and 

the area under the curve. The ROC curve is used to illustrate sensitivity versus specificity, whereas the AUC score provides 
a single descriptive statistic of the discriminatory performance of the model at different classification threshold levels. The 
statistic approaches a value of 1.0 when the entire range of classification thresholds is used, whereas below-chance 
performance is represented by an AUC = 0.5. The test dataset is not used in either the training or the validation sets, making 
this evaluation unbiased, and cross-validation is used to evaluate the predictive stability and generalizability of the developed 
model. The evaluation approaches ensure that the final assessment of the hybrid model’s performance is based on a range of 
performance measures, including the hybrid model’s classification power, which takes into account its clinical usefulness, 
reliability, and robustness to data splitting. 

The experiments performed in this research were performed via a personal computer with Windows 8 alongside a 2.5 
GHz Intel Core i7 processor and 12 GB of RAM, running python language via Kaggle. As delineated in section 4.1, various 
metrics are used to evaluate the model's predictive capabilities. 

To test the model, the holdout technique was employed to obtain an accurate estimate of the generalization error. The 
whole dataset was split such that 70% of these parts were used for training, whereas the remaining parts were used for 
validation (15%) and testing (15%). 
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4. RESULTS AND DISCUSSION 

The evaluation of the proposed hybrid machine learning model was carried out with a rigorous, multistage analysis 
designed to capture its true predictive potential and clinical relevance. Beginning with the preprocessing stage, both retinal 
image data and numerical patient data were subjected to specialized transformations to maximize the quality of the extracted 
features. Images were enhanced through resizing, normalization, and noise reduction, ensuring that spatial patterns critical 
for diabetic detection were preserved without distortion. Numerical features underwent z score normalization to eliminate 
scale disparities between variables such as glucose level, BMI, and blood pressure. This standardization not only prevented 
high-magnitude attributes from dominating the learning process but also ensured that the gradient updates during training 
were more stable and convergent. 

Following feature preparation, the dual-branch architecture—a CNN for image features and a GBM-inspired fully 
connected network for numerical features—was trained independently before their outputs were concatenated into a unified 
representation. The fusion layer allows the model to learn complex interdependencies between systemic health indicators 
and localized retinal biomarkers. For only image data, the model achieves lower accuracy, indicating that while image data 
alone are informative, it benefits significantly from the addition of numerical data. With respect to only numerical data, the 
average correctness is acceptable. This finding indicates that images are valuable because they facilitate a more precise 
diagnosis. The performance of the model is consistent, albeit poorer than when both types of data are used. The overall 
accuracy reached 96%, reflecting that a high proportion of correct predictions across both classes achieved 96% accuracy 
and an AUC of 0.994, demonstrating that multimodal integration leads to a richer decision boundary and greater 
discriminatory power. 

The classification results for the integrated dataset are shown in Table 3, where both the precision and recall scores 
remained high across classes, indicating balanced predictive behavior. The nondiabetic class achieved a precision of 0.98 
and a recall of 0.96, whereas the diabetic class scored 0.92 precision and 0.97 recall. These results translate into a 
macroaverage F1 score of 0.96, confirming the model’s capacity to reduce both false positives and false negatives—a critical 
attribute in a clinical screening context where errors carry significant medical consequences. 

TABLE III. PRESENT THE PERFORMANCE OF THE MODEL. 

Class Precision Recall F1-Score Support 

Not Diabetic 0.98 0.96 0.97 976 

Diabetic 0.92 0.97 0.95 524 

Accuracy   0.96 1500 

macro avg 0.95 0.96 0.96 1500 

weighted avg 0.96 0.96 0.96 1500 

 

The training and validation accuracy curves (Figure 3) revealed a steady upwards trajectory with minimal divergence, 

indicating strong generalization without overfitting. Correspondingly, the training and validation loss curves (Figure 4) both 

displayed consistent downwards trends, with a narrow gap that reflects an optimal bias–variance trade-off. The confusion 

matrix (Figure 5) further confirmed this performance: of the 976 nondiabetic individuals, only 42 were misclassified, and of 

the 524 diabetic patients, 17 were missed. Such a low false-negative count is particularly vital in medical applications, as it 

minimizes the risk of undetected disease progression. 

Fig. 3. Training and validation accuracy 
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Fig.4. Training and Validation of Loss 

 
Fig.5: Confusion matrix of the model 

The superiority of the hybrid model stems from its ability to capture orthogonal yet complementary data representations. 
Retinal images reveal microvascular changes, hemorrhages, and exudates—subtle yet powerful predictors of diabetic 
status—while numerical features quantify systemic factors that may not manifest visually in the early stages. The fusion of 
these modalities creates a decision space where complex patterns, inaccessible to single-modality models, become 
discernible. Additionally, the adaptive architecture lends itself to where the model can continue to work (with a minor 
accuracy penalty) in the absence of one or more modalities, improving the model’s robustness to data availability challenges 
encountered in practice. 

These metrics, together with low rates of misclassification and a high area under the curve (AUC), demonstrate the 
clinical feasibility of the proposed method. We believe its performance regardless of the presence of signs, along with its 
strong generalization ability, make it a strong candidate for the missing tool in large scale diabetic screening and late disease 
detection programs, where it could contribute to better patient outcomes through the provision of timely diagnoses. 

Compared with existing methods, the performance of our proposed model is competitive with that of state-of-the-art 
systems. Although only numerical data are used, Bülbül [15]achieves 98.72% accuracy, and Moustari, et al. [25] achieve an 
AUC of 0.998 when only image data are used, which fails to account for the potential gain from multimodal integration. The 
proposed framework bridges this gap by achieving state-of-the-art performance while improving the completeness of the 
reported diagnoses, providing a tool that is both accurate and clinically meaningful. These results confirm that the hybrid 
model creates an exciting synthesis of the visual and structured data that enables it to detect patterns that would likely be 
missed in any uni-modality system. The achievements of balanced metric performance, lowest misclassification rates, and 
high AUC support the promising real-world deployment potential of this novel method as a diabetes screening and early 
detection tool to promote better-informed clinical decision making for improved diabetes-related patient outcomes. 

 
 



 

 

220 Abdalrada et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 211–221 

 

6. Limitations 
Despite the encouraging predictive performance and robustness of the proposed hybrid machine learning framework in 

providing additional insights into the combination of retinal image features with other numerical patient data towards 
predicting diabetes, more limitations remain to be overcome. 

Finally, this study uses openly available datasets, the Pima Indians Diabetes Database and the APTOS 2019 Blindness 
Detection dataset, which are well used for research purposes, but are possibly not representative of true clinical populations. 
This may even vary considerably across health-care systems, given the diversity in demographics, imaging protocols and 
measurement standards. 

Second, the dataset we used for retinal images in this study was preprocessed and augmented for better model learning. 
These steps introduce greater robustness against overfitting but do not optimally achieve the representation of image quality 
and variability within real-world clinical imaging environments, where the imaging devices and operator skill vary greatly. 

Third, the integration process in this study involves late fusion via concatenation of feature vectors from the CNN and 
GBM branches. This is a very good approach, but it does not explore more sophisticated fusion strategies, such as attention 
or transformer-based multimodal frameworks, which may promote more rich interdependencies between modalities. 

Fourth, patients were available for evaluation of the model in a static setting (including numerical and image data from 
all patients). However, in the real world, some data that are either missing or incomplete are common, and an evaluation of 
the model in such situations should be conducted to understand how robust the model is. 

Finally, this study used a binary classification approach (diabetic vs. nondiabetic) without analysing the differences across 
stages or degrees of disease severity. Leveraging the model for multiclass classification would help gain insights into its 
clinical utility, specifically in early intervention planning and disease management. 

Future research efforts to overcome these limitations may consider testing the model on larger and more diverse patient 
populations, exploring novel multimodal fusion capabilities with advanced deep learning architectures, and assessing 
performance under more realistic clinical constraints. 
 

7. CONCLUSION 

This study illustrates the accuracy of a hybrid model that uses numerical data alongside images for diabetes prediction. 
The model was able to leverage both image and numeric data together to produce a mean accuracy of 96% and an AUC-
ROC of 0.994, which can be interpreted as an indication of the predictive power and trustworthiness of the model. The model 
is trained on the image data that zoomed the region of interest which is eye here to check for any anomalies along with blood 
sugar levels and BMI, and the numerical data helps to deeper analyse the system. The combined analysis of the two data 
modalities allowed for a more integrated model that can make better predictions compared to single modality models, and 
improve outcomes also for patients with early or late diabetes. 

Further iterations of this model could be developed through advanced feature engineering, attention mechanisms, or the 
application of additional data modalities including historical or lifestyle information from patients. This is an example of a 
hybrid model which broadly enhances the positive diagnosis which is one of the biggest challenges in the area of diagnostic 
error documentation and medical error documentation. 

 

REFERENCES 

[1] D. M. Nathan, "Diabetes: advances in diagnosis and treatment," Jama, vol. 314, no. 10, pp. 1052-1062, 2015. 

[2] D. J. Magliano and E. J. Boyko, "IDF diabetes atlas," 2022. 

[3] R. Deepa and A. Sivasamy, "Advancements in early detection of diabetes and diabetic retinopathy screening using 

artificial intelligence," AIP Advances, vol. 13, no. 11, 2023. 

[4] A. S. Abdalrada, J. Abawajy, T. Al-Quraishi, and S. M. S. Islam, "Prediction of cardiac autonomic neuropathy 

using a machine learning model in patients with diabetes," Therapeutic advances in endocrinology and metabolism, vol. 

13, p. 20420188221086693, 2022. 

[5] A. D. A. P. P. Committee, "1. Improving Care and Promoting Health in Populations: Standards of Medical Care in 

Diabetes—2022," Diabetes Care, vol. 45, no. Supplement_1, pp. S8-S16, 2021, doi: 10.2337/dc22-S001. 

[6] Z. Zhang, C. Deng, and Y. M. Paulus, "Advances in structural and functional retinal imaging and biomarkers for 

early detection of diabetic retinopathy," Biomedicines, vol. 12, no. 7, p. 1405, 2024. 

[7] M. D. Abràmoff, P. T. Lavin, M. Birch, N. Shah, and J. C. Folk, "Pivotal trial of an autonomous AI-based 

diagnostic system for detection of diabetic retinopathy in primary care offices," NPJ digital medicine, vol. 1, no. 1, p. 39, 

2018. 

[8] D. A. Kadhim and M. A. Mohammed, "Advanced machine learning models for accurate kidney cancer 

classification using CT images," Mesopotamian Journal of Big Data, vol. 2025, pp. 1-25, 2025. 



 

 

221 Abdalrada et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 211–221 

 

[9] A. Abdalrada, A. F. Neamah, and H. Murad, "Predicting diabetes disease occurrence using logistic regression: An 

early detection approach," Iraqi Journal For Computer Science and Mathematics, vol. 5, no. 1, pp. 160-167, 2024. 

[10] M. S. Qadir and G. BİLGİN, "Active learning with Bayesian CNN using the BALD method for hyperspectral 

image classification," Mesopotamian Journal of Big Data, vol. 2023, pp. 53-60, 2023. 

[11] A. S. Abdalrada, "The role of various risk factors in the prevalence of cardiac autonomic neuropathy and associated 

diseases," Deakin University, 2018.  

[12] R. C. Deo, "Machine learning in medicine," Circulation, vol. 132, no. 20, pp. 1920-1930, 2015. 

[13] M. S. Yao et al., "SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk 

Stratification," in International Workshop on PRedictive Intelligence In MEdicine, 2023: Springer, pp. 46-57.  

[14] P. Sampath et al., "Robust diabetic prediction using ensemble machine learning models with synthetic minority 

over-sampling technique," Scientific Reports, vol. 14, no. 1, p. 28984, 2024. 

[15] M. A. Bülbül, "A novel hybrid deep learning model for early stage diabetes risk prediction," The Journal of 

Supercomputing, pp. 1-23, 2024. 

[16] V. Poornima, "A Hybrid Model for Prediction of Diabetes Using Machine Learning Classification Algorithms and 

Random Projection," Wireless Personal Communications, pp. 1-13, 2024. 

[17] K. Abnoosian, R. Farnoosh, and M. H. Behzadi, "Prediction of diabetes disease using an ensemble of machine 

learning multi-classifier models," BMC bioinformatics, vol. 24, no. 1, p. 337, 2023. 

[18] J. Liu, B. Peng, and Z. Yin, "A Hybrid Machine Learning Method for Diabetes Detection based on Unsupervised 

Clustering," in Proceedings of the 2023 7th International Conference on Machine Learning and Soft Computing, 2023, 

pp. 144-149.  

[19] M. K. Hasan, M. A. Alam, D. Das, E. Hossain, and M. Hasan, "Diabetes prediction using ensembling of different 

machine learning classifiers," IEEE Access, vol. 8, pp. 76516-76531, 2020. 

[20] A. Dutta et al., "Early prediction of diabetes using an ensemble of machine learning models," International Journal 

of Environmental Research and Public Health, vol. 19, no. 19, p. 12378, 2022. 

[21] U. Bhimavarapu and G. Battineni, "Deep learning for the detection and classification of diabetic retinopathy with 

an improved activation function," in Healthcare, 2022, vol. 11, no. 1: MDPI, p. 97.  

[22] V. Gulshan et al., "Development and validation of a deep learning algorithm for detection of diabetic retinopathy 

in retinal fundus photographs," jama, vol. 316, no. 22, pp. 2402-2410, 2016. 

[23] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, "Convolutional neural networks for diabetic 

retinopathy," Procedia computer science, vol. 90, pp. 200-205, 2016. 

[24] B. Graham, "Kaggle diabetic retinopathy detection competition report," University of Warwick, vol. 22, no. 9, 

2015. 

[25] A. M. Moustari, Y. Brik, B. Attallah, and R. Bouaouina, "Two-stage deep learning classification for diabetic 

retinopathy using gradient weighted class activation mapping," Automatika, vol. 65, no. 3, pp. 1284-1299, 2024/07/02 

2024, doi: 10.1080/00051144.2024.2363692. 

[26] C. Lam, D. Yi, M. Guo, and T. Lindsey, "Automated detection of diabetic retinopathy using deep learning," AMIA 

summits on translational science proceedings, vol. 2018, p. 147, 2018. 

[27] R. Rajalakshmi, R. Subashini, R. M. Anjana, and V. Mohan, "Automated diabetic retinopathy detection in 

smartphone-based fundus photography using artificial intelligence," Eye, vol. 32, no. 6, pp. 1138-1144, 2018. 

[28] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes, "Using the ADAP learning 

algorithm to forecast the onset of diabetes mellitus," in Proceedings of the annual symposium on computer application 

in medical care, 1988, p. 261.  

[29] A. Kaggle, "Blindness Detection," ed, 2019. 

 


