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A B S T R A C T  
 

Deep learning DL techniques have recently been used to examine the classification of remote sensing 
data like hyperspectral images HSI. However, DL models are difficult to obtain since they rely largely 
on a large number of labeled training data. Therefore, a current challenge in the field of HSI classification 
is how to effectively incorporate DL models in constrained labeled data. The Bayesian Convolutional 
Neural Networks BCNN method is robust against overfitting on small datasets. One of the key methods 
for automating data selection is active learning AL, which has gained popularity in recent decades. By 
choosing the most informative samples, AL aims to reduce the costly data labeling procedure and build 
a robust training set that is resource-efficient. In this work, we aim to improve the performance of BCNN 
using AL method to build a competitive classifier considering the Bayesian Active Learning 
Disagreement BALD acquisition function (Dropout Bayesian Active Learning by Disagreement), which 
incorporates model uncertainty information. In a previous work, BCNN was built and applied on Pavia 
datasets giving 99.7% classification accuracy. For comparison traditional BCNN with BALD, The 
techniques were applied on the Indian Pines dataset. The average accuracy of the classification had 
increased from 90% to 98% using BALD method. 

1. INTRODUCTION 

As a result of the rapid advancements in hyperspectral imaging technology, hyperspectral sensors can now collect big data 
from a wide variety of electromagnetic spectrum bands. A significant quantity of spectral and spatial data indicating the 
texture, boundary, and shape of ground objects is available in the resulting hyperspectral image HSI. Because ground objects 
have unique features, HSI can precisely identify each every pixel. A wide range of applications have so far been created 
using HSI, including those for agriculture [1], anomaly detection [2], and marine monitoring [3]. 

Deep learning DL performs in feature extraction and learning capacity. Traditional Convolutional Neural Networks  CNN 
still has drawbacks, though, namely its reliance on massively labeled samples and restriction to the local receptive field. 
Thus, a popular topic in the field of HSI classification is optimizing DL models to work effectively in small labeled sample 
data [4]. To address this issue, several studies have concentrated on developing DL paradigms with few labeled examples, 
such as active learning AL. AL is based on an iterative process working on unlabeled data in order to choose the samples, 
which are most informative. This selection is made depending on the scores that are calculated from a model outcome [5]. 
The candidates are acquired and added to the training set, after which the classifier is trained using the new training data. 
Compared to training using randomly obtained samples, training using actively chosen samples is more effective. Machine 
learning researchers frequently employ AL techniques including, normalized entropy [6, 7], uncertainty sampling [8], and 
margin sampling [9]. The posterior probability of sample categories predicted by the deep learning model may be used by 
AL to calculate the uncertainty score before selecting informative samples. A few advanced AL techniques are created for 
HSI. Costs associated with labeling can be reduced by AL. Actually, a lot of AL techniques combine with posterior 
probability and rely on a different classifier to query informative samples [10]. As can be seen in Fig. 1, there are theoretically 
three AL approaches that are frequently discussed in the literature, membership query synthesis, pool-based sampling, and 
stream-based selective sampling. 
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Fig. 1. The three scenarios used in active learning 

The number of samples needed for the labeling is not predetermined in the stream-based selective sampling approach since 
each unlabeled sample is processed individually [11].  For online data that is delivered in sequence, this sampling rule is 
appropriate. It is challenging to calibrate the threshold in this situation to decide whether or not a sample should be chosen. 
New data is produced by membership query synthesis that may be annotated [11]. Due to the limited knowledge of data 
distribution in unexplored areas, it may suffer from low-quality generation even when it is efficient in the interpretable 
feature space. The best query samples are selected via pool-based sampling from the whole unlabeled set [11]. Each 
unlabeled sample is often given a score, and the selection is then made based on the score, for example, sending the samples 
with the highest scores for annotation. 

2. LITERATURE REVIEW 

Most deep learning AL techniques described in the literature studies employ pool-based sampling technique and aim to 
choose the most informative data from a set of unlabeled pool samples. Some deep learning AL techniques combine 
approaches for deep image creation with membership query synthesis. In the area of hyperspectral image classification, AL 
has recently received a lot of attention. First, a method using semi-supervised multinomial logistic regression classifier using 
an active selection approach based on entropy (EP) was reported [12].  Then, the loopy belief propagation methodology and 
AL methods were examined [13,14], together with the Bayesian classification method. Following that, a Markov random 
field MRF based AL framework [15] was presented. Additionally, some studies using the AL approach and deep learning in 
conjunction have been investigated for HSI classification [16, 17, 18]. In particular, a method was developed [16] that 
combines the stacked auto encoder (SAE)-based neural network with the multiclass level uncertainty (MCLU) AL criteria. 
A method to combine a weighted incremental dictionary learning criterion with the restricted Boltzmann machine (RBM) 
was put out in [19]. [7] used the posterior probability evaluation to exclude out samples with comparable data based on the 
feature's distance from the hyperplane. For the extraction of deep features with uncertainty prediction on a given sample, 
[20] initially employed an auto encoder using category probability output from a neural network. To assess the inner 
indeterminacy of a multi-view and to discover the exterior indeterminacy of samples, [10] employed the posterior probability 
distribution. The combination of AL and DL models has been investigated for HSI classification.  Integrating AL technique 
with DL methods were investigated in many researches for the classification of HIS. [21] combined CNN and BvSB (best 
versus second best [22]) into a single framework, utilizing AL's efficient labeling and CNN's potent feature extraction 
capabilities. [23] developed a deep AL approach based on BvSB to evaluate the information diversity with asses the spatial 
uncertainty for a se of candidate samples 

3. METHODOLOGY 

3.1 Indian Pines Dataset 

Indian Pines dataset was recorded by Aviris sensor. This dataset has an image size of 145 by 145 pixels and a spatial 

resolution of 20 m/pixel with wavelength range of 0.4 to 2.45 m. 200 effective bands covered 16 crop groups and preserved 

after processing the data's 224 original bands. 
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Two-thirds of the Indian Pines landscape is made up of agricultural land, while the other one-third is either covered with 

forest or other kinds of perennial forest flora. Minor roads, a rail line, a few low-density homes, various constructed 

elements, and two important dual-lane highways are all present. 

The sixteen classes of available ground truth do not all mutually exclusive. Figure 1 displays the classes and the sample 

sizes for each class. 

 

 
Fig. 2. Ground reference map of Indian Pines dataset, Indian Pines image, classes and samples for each class 

 

Noticing that there are four classes with low number of samples, which are the classes (1, 7, 9, 16). They represent areas 

with a small number of pixels. This low number of training samples will form a challenge for the classification model.  

3.2 BCNN with active learning 

With the least amount of training data possible, AL aims to create the best machine learning model. When using AL, the 
learner looks for the most informative data for the training. This is especially beneficial for HSI hyperspectral images. It 
might be difficult to train an effective classifier with little cost in labeling. The pool-based AL assesses the informativeness 
of instances with the highest levels of uncertainty that is most crucial to the label. The uncertainty estimates obtained in a 
DL environment are used in AL's query strategy [24].  Acquisition functions depend on evaluating the expected 
informativeness of the pool points. Based on these results they actively choose the following data point and add it to the 
training set. Those acquisition functions can be employed within a Bayesian AL framework 

For the purpose of developing machine learning models, AL algorithms concentrate on choosing their own training data. As 
mentioned earlier, AL can be used in three different situations. We look at the scenario of pool-based AL, where the learner 
can choose points for annotation from a pool of unlabeled data. AL algorithms must give a score or utility to each position 
in the input space that can be queried in order to determine which locations in the input space are the most informative for 
the learner to pick for the training data. Every point in the pool set is assessed using this utility function. An information 
theoretic approach can be used to construct these functions. Probabilistic AL generally refers to methods based on 
information theory. 

3.3 Methodology 

In Bayesian AL considering the HSI pool-based active learning. For a collection of N samples, where each one is a member 
of one of the L classes. Separating the training set into three categories: train, validation, and pool sets. Assuming that the 
class labels are unknown for the pool set samples. The active learner can choose points for annotation from a pool set of 
unlabeled data. The active learner selects one or more of the N samples based on an acquisition function, and we will assign 
the appropriate class labels to these images. At each iteration of the algorithm, the AL selects more samples from the 
unlabeled pool that would be highly informative if their labels were known. In other words, after collecting data, we must 
query points from a pool set in a way that minimizes the posterior entropy. Conditioned upon the input and observed data, 
these points are queried using the predicted information gain. This gain is comparable to the mutual information between the 
parameters and the unobserved output. It is give by: 

𝑈(𝑥) = 𝐻[𝑝(𝜃|𝐷)] − 𝐸𝑝(𝑦|𝑥, 𝐷)𝐻[𝑝(𝜃|𝐷, 𝑥, 𝑦)                     (1) 

= 𝐼(𝜃, 𝑦|𝐷, 𝑥) 

= 𝐻[𝑝(𝑦|𝑥, 𝐷)] − 𝐸𝑝(𝜃,𝐷)𝐻[𝑝(𝑦|𝑥, 𝜃)] 
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Where 𝐸𝑝(𝑦|𝑥, 𝐷)𝐻[𝑝(𝜃|𝐷, 𝑥, 𝑦) is the conditional entropy, and 𝐻[𝑝(𝜃|𝐷)] is the entropy which is a measure of the 

uncertainty in a distribution (average information): 

𝐻[𝑃(𝑥)] = − ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑃(𝑥)

𝑥

 

Where −𝑙𝑜𝑔𝑃(𝑥) = 𝐽(𝑥) is known as the information content. The relation of the mutual information between two different 
random variables is expressed according to  

𝐼[𝑋, 𝑌] = 𝐻[𝑝(𝑋)] −  𝐸𝑝(𝑌)𝐻[𝑝(𝑋|𝑌)] 

 

The gain in equation (1) is the acquisition function by [25]. It is known as the Bayesian Active Learning by Disagreement 
(BALD). The first term searches for the input x with a high degree of the model uncertainty regarding the output y. The 
second term searches for a data point with a low level of expected conditional uncertainty 𝐸𝑝(𝑦|𝑥, 𝐷)𝐻[𝑝(𝜃|𝐷, 𝑥, 𝑦). 

It can be explained that this acquisition function penalizes parameter uncertainty caused by inherent noise which is modeled 
by the likelihood 𝑝(𝑦|𝑥, 𝜃). It will rewards data points with high output entropy caused by the parameter uncertainty. The 
marginal predictive distribution 𝑝(𝑦|𝑥, 𝐷) is used to capture the parameter uncertainty. 

Monte Carlo approach can approximate the equation (1) using samples from the posterior in order to estimated U(x) 
according to the relation 

𝑈(𝑥) ≈ 𝐻[
1

𝑁
∑ 𝑝(𝑦|𝑥, 𝜃𝑖)] −

1

𝑁
∑ 𝐻(𝑝(𝑦|𝑥, 𝜃))]                   (2)

𝑁

𝑖=1

𝑁

𝑖=1

 

 

Using the Monte-Carlo samples of the predicted distribution generated by the test-time dropout of the Bayesian CNN 
implementation, equation (2) is then used to compute dropout BALD. The Bayesian CNN implementation may be done 
using dropout after each parameter layer to yield the expected class probabilities 𝑝(𝑦|𝑥). Following the Bayesian 
interpretation of CNNs, the model is averaged over T stochastic forward passes to produce MC dropout samples of predicted 
class probabilities.  

By averaging stochastic running over the model using Monte Carlo, the approach of using dropout at test time can be used 
[26]. We receive noisy estimates from the MC dropout testing performed on CNNs, with the possibility of varying test 
outcomes across multiple runs. This allows for the construction of the Dropout BALD acquisition function as following: 

 

𝑈(𝑥) ≈ 𝐻[
1

𝑘
∑ 𝑝(𝑦𝑖|𝑥𝑖)] −

1

𝑘
∑ 𝐻(𝑝(𝑦𝑖 , 𝑥𝑖))]                   (3)

𝑘

𝑖=1

𝑘

𝑖=1

 

 

Where k represent the number of Monte-Carlo samples approximations. 

The first term in (3) given by 𝐻[
1

𝑘
∑ 𝑝(𝑦𝑖|𝑥𝑖)]𝑘

𝑖=1   is the entropy of the average predicted probability. The AL searches for 

the locations where the model's average projected probability is marginally most uncertain. The AL searches for the location 

where the model's average output is the most uncertain. The second term in (3) given by  
1

𝑘
∑ 𝐻(𝑝(𝑦𝑖 , 𝑥𝑖))]𝑘

𝑖=1  seeks the point 

for which the average uncertainty is low. 

The interpretation of the Dropout BALD acquisition can be formed as that the learner queries samples based on the predicted 
information gain. This gain is formed by the difference between the uncertainty of the resulted average output and the resulted 
average uncertainty of the output. Figure (3) summarizes the flowchart of the applied AL method employing the Dropout 
BALD function. 
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Fig. 3. Flowchart of the method of work using active learning with Bald 

4. EXPERIMENTAL RESULTS 

Considering the Indian Pines dataset, the work included two stages, data preparation and model building. First, Principal 
Components Analysis PCA was applied on the data for features extraction and dimensions reduction. The dimensions were 
reduced from 200 to 80. In order to apply the BCNN, two steps were implemented. First, the channel wise-shift to highlight 
more important spectral bands and suppressing less useful ones by relocating the spectral bands that are comparatively more 
significant to a more central location for more convolutions operations. Second, patches creating of size 7-by-7 with 80 
channels. 

A previous work using traditional BCNN is in [27][28], where the model outperforms for Pavia University and Pavia Center 
datasets with 99% accuracy. Applying our Bayesian model on the new dataset Indian Pines, the results in table (1) were 
obtained. Where the accuracy of classification is shown for each class. 

 

TABLE I BCNN CLASSIFICATION RESULTS 

  precision recall  f1 f1-score support 

1 Alfalfa 0.857 0.857 0.857 14 

2 Corn-notill 0.962 0.886 0.922 428 

3 Corn-mintill 0.803 0.900 0.848 249 

4 Corn 0.781 0.704 0.741 71 

5 Grass-pasture 0.925 0.931 0.928 145 

6 Grass-trees 0.972 0.968 0.970 219 

7 Grass-pasture-mowed 0.667 1.000 0.800 8 

8 Hay-windrowed 0.972 0.986 0.979 143 

9 Oats 0.500 0.500 0.500 6 

10 Soybean-notill 0.847 0.836 0.841 292 

11 Soybean-mintill 0.885 0.946 0.914 737 
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12 Soybean-clean 0.910 0.685 0.782 178 

13 Wheat 0.935 0.951 0.943 61 

14 Woods 0.969 0.976 0.972 380 

15 Buildings-Grass-Trees-Drives 0.874 0.836 0.855 116 

16 Stone-Steel-Towers 0.903 1.000 0.949 28 

      

 Accuracy   0.904 3075 

 Macro Average 0.860 0.873 0.863 3075 

 Weighted Average 0.906 0.904 0.904 3075 

 

Implementing the technique of BALD using the algorithm in figure (3), we considered N1=100 acquisition iterations and 
N2=50 dropout iterations. The method was applied on the 7*7*80 samples obtained from the previous steps. Table II. shows 
the results of the classification for each class. 

TABLE II BALD CLASSIFICATION RESULTS 

  precision recall  f1 f1-score support 

1 Alfalfa 1.000 0.929 0.963 14 

2 Corn-notill 0.959 0.974 0.966 428 

3 Corn-mintill 0.968 0.964 0.966 249 

4 Corn 0.944 0.958 0.951 71 

5 Grass-pasture 1.000 0.966 0.982 145 

6 Grass-trees 0.991 0.995 0.993 219 

7 Grass-pasture-mowed 1.000 1.000 1.000 8 

8 Hay-windrowed 0.993 0.986 0.989 143 

9 Oats 1.000 0.500 0.667 6 

10 Soybean-notill 0.938 0.979 0.958 292 

11 Soybean-mintill 0.989 0.959 0.974 737 

12 Soybean-clean 0.947 0.994 0.970 178 

13 Wheat 1.000 1.000 1.000 61 

14 Woods 0.997 0.995 0.996 380 

15 Buildings-Grass-Trees-Drives 0.966 0.983 0.974 116 

16 Stone-Steel-Towers 0.966 1.000 0.982 28 

      

 Accuracy   0.975 3075 

 Macro Average 0.979 0.949 0.958 3075 

 Weighted Average 0.976 0.975 0.975 3075 

 

Comparing with the results of the BCNN, the improvement in accuracy can be seen for each class especially (1, 7, 9, 16) 
where the amount of data is small. The experimental results show the effectiveness of the BALD acquisition function based 
on Bayesian CNN architecture. Applying BALD can significantly solve the problem of overfitting for training CNN 
classifiers on small dataset. Due to the efficiency and characteristics of the acquisition function BALD, this technique 
outperforms. 

5. CONCLUSION 

In this study, we applied the BALD approach with BCCN for HSI classification. The challenge of required large amounts of 
training data was resolved by this method. Considering the pool-based active learning with the BALD acquisition function, 
which is computed using the approximating predictive distribution as an indication of uncertainty. A Bayesian CNN 
architecture's predictive distribution is obtained via BALD using Monte-Carlo (MC) dropout. A significant improvement in 
the classification performance of HIS Indian Pines dataset had achieved based on the training of BCNN on a small set of 
labelled train data using BALD. About 8% improvement in the classification’s averaged accuracy comparing with the 
traditional BCNN. One benefit of BALD is that the necessary computations are not inextricably linked to a certain model. A 
future work could consider more complicated HSI datasets in order to evaluate the performance of this method upon more 
difficult classification tasks. 
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