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A B S T R A C T  
 

Early and precise detection of Alzheimer’s disease (AD) is essential for successful treatment. This 
research presents a system that autonomously detects and categorizes the phases of Alzheimer’s disease 
via brain scans and sophisticated deep learning techniques, including InceptionV3 and ResNet50. These 
models started with pretrained weights and were augmented by including bespoke classification layers, 
which consisted of dropout, batch normalization, and dense layers to increase performance and mitigate 
overfitting. The preprocessing processes included scaling the picture to 224 by 224 pixels, using 
average filtering for denoising, and converting the color space to guarantee compatibility with the 
models. Evaluations of the OASIS dataset illustrate the efficacy of the proposed approaches in 
accurately differentiating among the various phases of Alzheimer’s disease, including four 
classifications: nondemented, slightly demented, very mildly demented, and moderately demented. 
ResNet50 outperforms InceptionV3, achieving an accuracy of 93.9%, a micro F1 score of 94%, and a 
macro F1 score of 96%, demonstrating its efficacy and consistent performance in detecting and 
classifying all categories. Compared with current models, the suggested technique is more effective.

 
1. INTRODUCTION 

A major challenge for healthcare providers has been Alzheimer’s disease (AD) in the last decade. The global prevalence 
of AD is estimated to be approximately 5.5 million in the 65+ age group. It is the sixth leading cause of death in the country. 
The deterioration of cognitive capacity and the lack of confirmed treatments that alter the disease are hallmarks of AD, an 
incurable neurodegenerative brain ailment [1]. Much research and development has led to the development of ways to 
diagnose the disease in its presymptomatic stages in the hopes of slowing or stopping its course. Consequently, advanced 
neuroimaging techniques, such as positron emission tomography and magnetic resonance imaging (MRI), have been 
developed and used to identify structural and genetic indicators associated with AD. Due to the great improvement in 
neuroimaging equipment, integrating large-scale multimodal neuroimaging data with high dimensions has become more 
challenging [2]. Consequently, there has been a substantial increase in the demand for computer-assisted systems capable of 
performing integrative analysis. Recent advancements in artificial intelligence and other intelligent technologies have 
enabled the utilization of several innovative techniques, including machine learning (ML), to assist physicians in diagnosing 
Alzheimer’s disease. Several well-known pattern analysis methods have been used for early AD detection and are now 
promising for the prediction of AD progression [3, 4]. These methods include logistic regression (LR), support vector 
machines (SVMs), linear discriminant analysis, recursive feature elimination via support vector machines, and the linear 
programming boosting method. 

 
Classification techniques, such as SVMs, often encompass four stages: feature extraction, feature selection, 

dimensionality reduction, and selection of feature-based approaches. Time, specialized knowledge, and even several 
optimization rounds may be necessary for these processes [5]. The area of large-scale, high-dimensional medical imaging 
analysis has attracted much interest in deep learning (DL), a subfield of ML, as a way to overcome these challenges. With 
raw neuroimaging data, deep learning creates features via "on-the-fly" machine learning. Compared with more traditional 
ML techniques, deep learning approaches such as convolutional neural networks (CNNs) perform far better [6, 7]. 

Recent advancements in machine learning and deep learning have enhanced the diagnosis and categorization of 
Alzheimer’s disease. Researchers have used many methodologies for neuroimaging, cognitive, and behavioral data. The 
approaches include  support vector machines (SVMs), artificial neural networks (ANNs), decision trees, convolution neural 
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networks (CNNs), and recurrent models such as long short-term memory (LSTM) and bidirectional long short-term memory 
(BiLSTM). Despite notable advancements, many gaps remain in the literature that this project intends to address: 

• Many existing studies depend on traditional machine learning techniques (such as SVM and decision trees) or 
rudimentary deep learning models (such as shallow CNNs or basic LSTM variations). Limited research has been conducted 
on advanced architectures such as ResNet50 and InceptionV3, which are prevalent in computer vision but underexploited in 
medical imaging for Alzheimer’s disease diagnosis. 

• Direct, comprehensive comparisons of modern deep learning models on identical Alzheimer’s disease datasets are 
lacking. It is crucial to ascertain which models exhibit optimal performance across various AD categorization tasks. 

• Many contemporary deep learning applications concentrate only on binary classification (AD vs non-AD). Limited 
research has assessed the capacity of modern models, such ResNet50 and InceptionV3, to differentiate between phases such 
as mild cognitive impairment (MCI), moderate Alzheimer’s disease (AD), and severe AD. This ability is crucial for prompt 
diagnosis and action planning. 

 

ResNet50 and InceptionV3 are used for their proficiency in feature extraction and transfer learning. Many studies 
connected to AD, however, do not capitalize on these advantages. 

This work aims to develop a deep learning-based system capable of detecting and classifying the beginning or severity 
of Alzheimer’s disease. Consequently, this article intends to do the following: 

• The various phases of Alzheimer’s disease were analysed, and contemporary machine learning and deep learning 
techniques were applied to neuroimaging and clinical data. 

• We introduce sophisticated deep learning architectures using InceptionV3 and ResNet50, which exhibit robust 
feature extraction and transfer learning capabilities. 

• We propose a deep learning framework using these models for the precise classification of Alzheimer’s disease 
stages, employing pretrained weights and fine-tuning techniques to optimize the extraction of critical discriminative 
characteristics relevant to disease development. 

• We evaluate the efficacy of these models on a typical AD dataset and systematically contrast them with 
conventional approaches. 

The following four primary sections structure this manuscript. Section 2 describes AD, illustrates the importance of using 
DL techniques, and discusses some related work in the literature. In Section 3, the method proposed in this research is 
described, followed by the methodology outcomes and discussion in Section 4. Section 5 concludes the work in this research 
paper. 

2. BACKGROUND 

2.1 Alzheimer Disease 

Alzheimer’s disease is the most prevalent form of dementia when cognitive deterioration is examined [8]. AD is 
characterized by a gradual start, initially presenting as slight memory deficits before progressing to a deterioration in 
cognitive functions, including communication and environmental perception [9]. The brain areas involved in cognitive 
functions, including memory, language, and reasoning, are impacted. A decline in an individual’s ability to perform 
normal activities may result in significantly negative consequences [10]. AD is categorized as a progressive 
neurological condition. 

This signifies alterations in the brain’s structure caused by the accumulation of specific proteins. It causes atrophy and 
neuronal loss, which are later pathological alterations in the brain. Initial manifestations of AD frequently include difficulties 
in recalling previous conversations or events. This occurrence may lead to significant cognitive deficits and a marked decline 
in individuals’ ability to perform daily activities [11]. The progression of symptoms can be either mitigated or accelerated 
by pharmacological medications. A remedy for AD has not yet been discovered. In advanced phases, a substantial decline in 
brain function may result in detrimental outcomes such as dehydration, malnutrition, or illness [12]. The previously listed 
issues may result in fatalities. 

The principal manifestation correlated with AD is memory impairment. Initial indicators include challenges in recollecting 
previous conversations or occurrences [11]. Nevertheless, as the disease progresses, cognitive ability decreases, and additional 
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symptoms manifest. Those who are affected by the previously mentioned condition may initially manifest symptoms such as 
cognitive dysfunction and memory impairment. As symptoms progress, one might observe a family member or friend exhibiting 
heightened awareness of the issues at hand [13]. Brain abnormalities characterize AD, contributing to the gradual development of 
cognitive and functional declines [14]. The issues mentioned above can be categorized as shown in Fig. 1 [15]. 

 

 

Fig. 1. Major symptoms detected in AD patients. 

As illustrated in Fig. 1, the aforementioned problems can be categorized into five separate groups: 

• Memory: This is a prevalent phenomenon that individuals may encounter on an intermittent basis. 

• Thinking and reasoning: Pupils who have received a diagnosis of attention deficit (AD) frequently encounter 
challenges with concentration and reasoning, specifically concerning abstract notions such as numbers. 

• Making Judgments and Decisions: An individual may wear inappropriate clothing for the current weather conditions 
or display poor judgment in social situations. 

• Planning and Performing Familiar Tasks: The execution of routine tasks becomes more challenging for individuals 
with AD as a result of the subsequent sequential stages: planning and performing familiar tasks. 

• Changing Personality and Behavior: Personality and Behavior Alterations: AD is associated with neurobiological 
changes that can significantly influence an affected individual’s disposition and conduct. 

 

1.2  Deep Learning 

ML is an area of artificial intelligence in which computer systems gain knowledge through experience [16]. ML refers 
to the implementation of methods by computers to autonomously learn from data and perform tasks without explicit 
programming. DL employs sophisticated algorithms whose architecture was inspired by the human brain. It is an artificial 
intelligence (AI) methodology that instructs computers to process data in a manner analogous to that of the human brain. 
Models employing DL are capable of discerning intricate patterns in text, audio, images and other data types to produce 
accurate analyses and predictions [17]. The primary objective of AI is to develop intelligent systems capable of human-like 
thought and action. Recently, several AI systems, such as voice-activated television remotes, digital assistants, fraud 
detection mechanisms, and automatic facial recognition technologies have been developed via DL. 

DL is also an essential component of innovative technologies such as autonomous vehicles and virtual reality. DL models 
are intelligent systems in which data scientists train to perform tasks via an algorithm or a predetermined sequence of 
operations. Businesses employ DL models across a range of applications to assess data quality and produce forecasts [19]. 
DL is currently utilized extensively in numerous industries, including the automotive, aerospace, manufacturing, 
electronics, and medicinal sectors [20]. 

Neural networks are typically composed of multiple layers. In the initial stratum, referred to as the input layer, input 
signals are received and transmitted to the subsequent stratum. A number of computations and feature extractions follow 
the hidden layer. Frequently, numerous concealed layers exist. To provide input signals to the concealed nodes, a weight is 
applied to each signal, and a bias is added to the result. Each stratum is then assigned an activation  function to determine 
which node should be executed [21]. 
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1.3 Related Work 

Researchers and physicians are utilizing ML and DL for the detection of AD. Reference [22] details groundbreaking 
work that used Eigenbrain on MRI scans of the brain to reveal a detection mechanism. For model training, they combined 
SVMs with particle swarm optimization. Following their advice helped pinpoint which areas of the brain were most 
impacted by AD. There is a mention of a nearby study article in [23] that focused on MRI scans. In this study, the scientists 
used ANN and gradient boost models to differentiate dementia from other distinct traits. The authors achieved comparable 
outcomes in their study [22]. In [24], the authors proposed a multimodal technique that combined cognitive and linguistic 
aspects. The scientists trained the model to detect AD and its severity via an ANN. The results from their method outperform 
those from well-established methods. 

To identify AD, the authors of [25] created a new framework using ML and DL techniques. The decision trees, LTSM, 
CNN, SVM, K nearest neighbor (KNN), and multilayer perceptron (MLP) were among the numerous methods used and 
evaluated. The detection accuracy has been used to measure the performance of various ML and DL techniques. With a 
detection accuracy of 91.28%, the experimental findings show that BiLSTM performs better than the ML approaches do. 
In [26], the authors used DL to analyse imaging, genetic, and clinical test data to identify patients as AD, MCI, or controls. 
To extract features from genetic and clinical data, they utilized stacked denoising autoencoders; they employed 3D 
convolutional neural networks for imaging data. Furthermore, an innovative method for interpreting data was developed to 
identify the best features that the deep models acquired via perturbation analysis and clustering. Deep models, including 
KNN, SVM, and random forest (RF), outperformed shallow models in the AD neuroimaging initiative dataset. The 
precision, recall, accuracy, and F1 scores of these models indicate that multimodality data integration outperforms single-
modality models. 

In [27], scientists devised a model for diagnosing and tracking the progression of AD that is both precise and 
straightforward to interpret. A two-layer model was constructed by incorporating eleven modalities obtained from the AD 
neuroimaging initiative dataset through the implementation of the random forest classification method. The initial layer 
detects Alzheimer’s disease patients in the early stages, whereas the subsequent layer distinguishes MCI-to-AD 
progression. Twenty-two explainers and the SHapley additive explanations feature attribution framework were used to 
guarantee the model’s transparency and explainability. 

The authors of [28] introduced a lightweight stacked convolutional neural network with a channel attention network for 
the categorization of AD based on MR images to overcome existing challenges. The authors progressively connected five 
CNN modules to form a stacked CNN aimed at generating a hierarchical understanding of features through multilevel 
extraction, effectively reducing noise and enhancing the efficacy of the weights. This function was later incorporated into 
a channel attention module to discern pertinent features on the basis of the channel dimension, hence improving the 
selection of essential features. Consequently, the model exhibited a reduced number of parameters, making it suitable for 
training on constrained datasets. However, the authors in [29] employed advanced DL methods to increase the diagnostic 
effectiveness of gait analysis. Datasets acquired from wearable sensors and motion capture devices were employed to 
construct convolutional neural networks and recurrent neural networks for classifying individuals as healthy or at risk for 
AD. 

The authors of [29] examined the viability of multitask models for volumetric analysis of magnetic resonance imaging 
scans in the diagnosis of knee osteoarthritis while considering computational efficiency. To exploit the correlation Between 
segmentation and classification tasks, two 3D multitask models, OA-MTL (osteoarthritis-multitask learning) and RES-MTL 
(residual multitask learning), were created to concurrently segment knee structures and classify the incidence of knee 
osteoarthritis. 

Table I provides a summary of the comparison of existing works discussed in this section. Consequently, current deep 
learning-based anomaly detection systems have focused on improving classification efficacy. Nonetheless, few 
experimental studies have focused on creating a more compact model that exhibits both decreased complexity and 
improved accuracy in identification. This work seeks to create an efficient and precise deep learning-based system for 
identifying and categorizing the beginning and development stages of Alzheimer’s disease. A sophisticated deep learning 
architecture using InceptionV3 and ResNet50, capitalizing on their robust feature extraction skills and transfer learning 
potential, is shown. The OASIS dataset is used to evaluate and compare these techniques. 

 

TABLE. I.  COMPARATIVE SUMMARY OF PREVIOUS STUDIES ON AD DETECTION USING ML/DL 

Study Data Modality Techniques Used Main Contribution 

[22] MRI 

SVM mixed with Particle 

Swarm Optimization; 

Eigenbrain 

Detect brain areas affected by AD. 

[23] MRI 
ANN with Gradient Boost- 

ing 
Detect AD. 
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[24] 
Cognitive with Lan- 

guage ability 
ANN 

Multimodal approach based on cognitive and 
linguistic features. 

[25] Various type of Data 
DT, BiLSTM, CNN, SVM, 

KNN, and MLP 
Comparative study between ML and DL methods. 

[26] 
Imaging, Genetic and 

Clinical data 

3D-CNN, Stacked Denois- 

ing Auto-Encoders, SVM, RF and 

k-NN 

Effective feature selection technique. 

[27] 
ADNI (11 modali- 

ties) 
Random Forest with SHap- 

ley Additive explanations 
Two-layer interpretable model for detection and 

MCI-to-AD progression tracking 

[28] MRI 

Stacked  CNN  embedded 

with Channel Attention 

Network 

Lightweight model suitable for small datasets 
with an improved feature selection technique. 

[30] 
Gait (wearables, 

motion capture) 
CNN and RNN Used gait analysis for classifying AD risks. 

 
2 PROPOSED APPROACH 

This article presents DL-based approaches for detecting and classifying AD levels. In addition to the normal case, three 
levels of AD were considered: mild, moderate, and very mild dementia. Advanced approaches to DL are utilized in this 
paper to distinguish the various phases of AD via the following methodology process (see Fig. 2). 

2.1 Data collection 

A sequence of photographs is collected for training the DL model. The photographs that are gathered ought to depict 
both the healthy state and the three potential phases of AD [31]: 

• Non-Demented (Non-D) Individuals: This group comprises normal patients and shows no signs of AD. 

• Mild Demented (Mild-D): This group includes patients for whom medical professionals and family members can 
both observe that they are experiencing severe memory and cognitive problems. 

• Moderate Demented (Moderate-D): Patients in this group are characterized by increased levels of confusion and 
forgetfulness. They require progressively more assistance with activities of daily living and personal hygiene. 

• Very Mild Demented (VeryMild-D): In this group, the cognitive abilities of the patients decline as the condition 
progresses. The condition hinders the patient’s capacity to engage in physical activities and ambulate. The 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Proposed approach process from collecting significant data to testing the performance of DL models. 

Patients exhibit a loss of communicative ability. Conscious discourse and communication have become impossible. They 
may seldom express words or sentences. Ongoing support with personal hygiene is needed. 

This research uses the OASIS MRI dataset, which includes 40,384 pictures sourced via Kaggle. The images were 
categorized into four categories according to the progression of Alzheimer’s disease. No dementia symptoms (non-D) may 
suggest mild dementia symptoms (very mild-D), whereas mild dementia symptoms are suggested (mild-D), and moderate 
dementia symptoms are indicated (moderate-D). The dataset serves as an essential resource for the research and 
identification of early indicators of Alzheimer’s disease [37]. This research analysed 6,430 MR images with the following 
distributions: non-D: 43.8%, very mild-D: 30.7%, mild-D: 24.7%, and moderate-D: 0.8%. 
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2.2 Image Preprocessing Technique 

By employing image processing techniques, the acquired images can be refined [32]. All the MR images must undergo a 
preprocessing phase to meet the primary specifications of ResNet50 and InceptionV3, ensuring consistency and compatibility 
with the deep learning models: 

• Resizing: All the images are resized to 224 × 224 pixels to match the input dimensions of InceptionV3 and ResNet50: 

• Denoising: A 3 × 3 average filter is applied to smooth high-frequency noise: 

 
 


1

1

1

1
,, 9

1

m m
njmiji II  

• Color Correction: BGR channels are reordered to RGB for compatibility with ImageNet-based models. 

• Normalization: Pixel intensities, called I, are normalized to the [0, 1] range: 

255

I
Inom   

•  These steps enhance DL model performance and reduce overfitting by creating suitable input features. 
 

2.3 Split Data 

A two-step split technique was used to partition the dataset into smaller subgroups, ensuring a comprehensive and 
equitable evaluation of the suggested deep learning models. The whole dataset was first divided into training and temporary 

test subsets with the train_test_split() function, employing an 80:20 ratio and stratification according to class labels to 
preserve a uniform class distribution throughout the subsets. The temporary test set was then divided into two equal parts, 
the validation and final test sets, each comprising 10% of the total data, via stratified sampling once again. To ensure that 
the  results could be repeated, a fixed random seed (random_state = 42) was used. 

 

2.4 Deep Learning Models 

In this step, InceptionV3 and ResNet50 are implemented. Several changes were made to the standard pretrained models 
to make the InceptionV3 and ResNet50 architectures better suited to AD images. The descriptions of the learning  algorithms 
are as follows [33]: 

 

2.4.1 InceptionV3 
For the multiclass classification challenge of Alzheimer’s disease level detection and classification, the InceptionV3 

convolutional neural network served as the foundation of our deep learning model. InceptionV3 is a recognized architecture 
noted for its computational efficiency and proficient multiscale feature extraction using factorized and parallel convolutions. 

 Feature Extraction. An InceptionV3 model pretrained with weights derived from ImageNet was used. The 
upper classification layers were omitted (include_top =False), and the input picture dimensions were 
modified to 224 × 224 × 3. All the convolutional layers in the foundational model were immobilized throughout 
training to maintain the general-purpose features acquired from extensive datasets. 

 

On the basis of the input image, denoted by X ∈ R224×224×3, the InceptionV3 model can be employed as a deep feature 
extractor as follows: 

F = fInception(X) (3) 

 

where F ∈ Rn×n×d represents the extracted feature map. 

 Custom Classification Head. A custom classification head was applied to the extracted features via the 
following layers: 
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Global average pooling that minimizes each feature map to a scalar: 

d1,....,i for,
n

i
jiF

nig 



2

2
1

,
1

 (4) 

where: 

– F is the 3D feature tensor, 

– n represents the spatial dimension, 

– d is the number of feature maps, 

– g represents the resulting 1D vector after applying global average pooling across spatial 
dimensions. 

 Fully connected layers [34]: The features resulting from the previous step were fed into a series of dense layers 
on the  

basis of ReLU activations, batch normalization, and dropout regularization: 

 

   lll bhWDropoutBNh
l


1
  (5) 

where: 

– hl: Output (activation) of the l-th layer. 

– hl−1: Output (activation) of the previous layer, layer l − 1. 

– Wl: Weight matrix for the l-th layer (learnable parameters). 

– bl: Bias vector for the l-th layer (learnable parameters). 

– Wl · hl−1 + bl: Linear transformation, also known as affine transformation. 

 

 Dropout: To avoid overfitting, this regularization method "drops" (sets to 0) a subset of units at random during 
training. 

Batch normalization (BN): BN normalizes the inputs to have zero mean and unit variance, assisting in stabilizing and 
accelerating training. 

ϕ: Nonlinear activation function (ReLU). 

Output layer represented by a dense layer with Softmax activation. It is used to provide the final class probabilities for the 
adopted 4 levels: 
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where: 

– iŷ  is the predicted probability that the input belongs to class i. 

– zi is the logit provided by the DL model for class i. 

– C is the total number of classes (4 levels of AD). 

–  

C

j

z je
1

 is the normalization term. 

Model training. The Adam optimizer is used with the categorical cross-entropy loss function: 

 



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i
iiCCE yyL

1

ˆlog  (7) 

– LCCE represents the categorical cross-entropy loss value. 
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– C is the total number of classes in the classification task (the adopted four AD levels). 

– yi is the true label for class i in one-hot encoding. It is set to 1 if class i is the correct class and 0 otherwise. 

– iŷ  represents the predicted probability that the input belongs to class i. It is usually calculated on the basis of 

the Softmax function. 

The training was conducted over 60 epochs with two callbacks. The first component is ModelCheckpoint. It is used to 
preserve the optimal model according to the validation performance. The second mechanism is early stopping, which is used 
to terminate training if the validation performance does not improve for 10 consecutive epochs. 

Evaluation Metrics. The accuracy of the model is computed as follows: 

    



N

i
yy iiN

Accuracy
1

maxargˆmaxarg1
1

 (8) 

Where: N is the available number of samples in the dataset. 

• iŷ  represents the predicted output vector for the i-th sample. 

• where iy  is the true label value of the i-th sample. 

• arg max( iŷ ) represents the index of the maximum value in the predicted vector yˆi, representing the predicted class. 

• arg max( iy ) represents the index of the maximum value in the ground truth vector yi, representing the true class. 

•     ii yy maxargˆmaxarg1   is an indicator function that equals 1 if the predicted class matches the true class for sample i 

and 0 otherwise. 

 

2.4.2 ResNet50 Model 
The ResNet50 model serves as a feature extractor to provide a robust multiclass classification model for the phases of 

Alzheimer’s disease. ResNet50 is a deep convolutional neural network recognized for its residual connections. It mitigates 
the vanishing gradient issue and facilitates the training of deeper networks. 

 Feature Extraction: The top classification layers were removed from the pretrained ResNet50 
(include_top=False). 

The supplied picture dimensions were adjusted to 224 × 224 × 3. The training preserves all the convolutional layers in the 
basic model to keep the obtained hierarchical visual characteristics from enormous natural image datasets. 

For an input image, called X ∈ R224×224×3, the ResNet50 model was used as a deep feature extractor: 

F = fResNet(X) (9) 

where F represents the extracted feature tensor provided by the last convolutional block. 

 Custom Classification Head: A custom classification head was employed on the extracted feature maps. it 
contains: 

The flattening layer converts the 3D feature map F into a 1D vector: 

f = Flatten(F) (10) 

where f ∈ Rd represents the flattened feature vector. 

A completely linked output layer, referred to as a dense layer, incorporates Softmax activation to associate features with 
class probabilities, as described in equation 6. 

 Model training: The Adam optimizer was used to compile and train the model on the basis of the categorical 
cross-entropy loss function given in equation 7. Two training callbacks were utilized: early stopping (patience = 
8) to terminate training when the validation loss ceased to improve and restoring_best_weights=True to 
retain the model with the lowest validation loss. The training generator allowed a maximum of 60 epochs for 
model training, whereas a separate validation generator confirmed the model’s proper functionality. 
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 Evaluation Metrics: The model’s performance was evaluated in terms of accuracy, as defined by equation 8. 
 The proposed architectural tuning improves feature extraction by decreasing overfitting and improving 

generalization, especially for differentiating between mild and moderate AD stages. EarlyStopping and 
ModelCheckpoint callbacks were used to handle overfitting by tracking validation loss and accuracy, and training 
was stopped when no improvement was observed for 10 epochs. 

2.5 Test Performance 

The efficacy of the proposed method is assessed by calculating the F1 score, accuracy, confusion matrix (CM), and recall 
precision. These measures are discussed later in this section. 

 

An evaluation of the effectiveness of a classification algorithm is obtained through the use of CM. The categorization 
problem investigated in this study is not binary. There are four different output classes that might be used. As a result, the 
CM should conform to Table II [35]. 

TABLE. II. A SAMPLE OF CM REPRESENTING FOUR DIFFERENT CLASSES: A, B, C, AND D 
  Predicted 

 Class A B C D 

 
Actual 

A TPA PAB PAC PAD 
B PBA TPB PBC PBD 
C PCA PCB TPC PCD 
D PDA PDB PDC TPD 

 

The variable TPI represents the true positive for Class I, whereas the variable PIJ represents the instance when the real 
class is I but the projected class is J. The CM that represents a single class is derived according to Table III. 

TABLE. III.  CM SAMPLE FOR ONE CLASS 
  Predicted 

  A Not A 

Actual 
A TPA FNA 

Not A FPA TNA 

 

The FNs of Class I in Table II are computed as follows: 

FN = PAB + PAC + PAD (11) 

FP denotes a false positive for class I and is computed as follows: 

FPA = PBA + PCA + PDA (12) 

TN is the true negative of class I and is computed as follows: 

TN = TPB + PBC + PBD + PCB + TPC + PCD + PDB + PDC + TPD (13) 
 

The performance metrics are calculated via Table II and represented in Table IV [36, 37]. 

TABLE. IV. . PERFORMANCE METRICS FORMULAS 
Metric Formula 

Precision Precision = TP/(TP + FP) 
Recall Recall = TP/(TP + FN) 

F1-score F1-score = 2 × precision × recall/(precision + recall) 

Micro F1-score 
MicroF1-score = Σ(Number of class_i * F1-score(class_i))/Total 

Number of Classes 
Macro F1-score MacroF1-score = Σ(F1-score)/Number of Classes 

Accuracy Accuracy = (TP + TN)/(TP + FP + FN + TN) 

 

Each metric description is listed below: 

• Precision denotes the proportion of accurate positive predictions that are realized. 

• Recall measures the number of positive observations that are predicted to be positive. 

• The F1 score is determined by combining the model’s recall and accuracy to complete the calculation. With respect 
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to recall and precision, it is the harmonic mean of the two. 

• The micro F1 score is calculated by adding together the total number of false positives, true positives, and false 
negatives. In situations where there is an imbalance between the classes in the dataset, the micro F1 score can be 
useful. 

• The macro F1 score is a calculation that determines the average of the F1 scores for each class, treating all classes in 
the same manner. The F1 score, which is averaged across all classes, is the most accurate measurement for multiclass 
classification. 

• Accuracy is a term that refers to the degree to which the classifier is able to predict the future properly. Additionally, 
it is a representation of the proportion of accurate forecasts in relation to the total number of predictions. 

 

3 RESULTS AND DISCUSSION 

This section presents and discusses the outcomes of applying the InceptionV3 and ResNet50 models to the dataset 
outlined in Section 3.1. A comparison with the current system is also shown. Fig. 3 shows a comparison of MRI images 
before and after the use of preprocessing techniques at various stages of Alzheimer’s disease. The photos in the right 
column exhibit enhanced clarity and uniformity due to scaling, denoising, color correction, and normalization, making 
them more appropriate for deep learning model input. 

 

Fig. 3. Comparison between original and preprocessed MR images for different AD stages. The left column shows the original images, and the right column 
illustrates the corresponding preprocessed versio
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3.1 Model performance results 

Fig. 4 and Fig. 5 show the confusion matrices for InceptionV3 and ResNet50 for the multiclass classification task of AD 
stage prediction. 

 

Fig. 4. CM for ResNet50. 

 

 

Fig. 5. CM for InceptionV3. 

 

The ResNet50 model excels at classifying Alzheimer’s disease categories. It identifies almost all instances of the 
VeryMild-D classification. The detection rates for the Non-D and Mild-D classes are notably high, with 622 out of 639 and 
601 out of 662 accurately categorized, respectively. The Moderate-D class is considered the most challenging class owing to 
its parallels with other classes and an unequal distribution of patients; however, it attained 546 accurate predictions, despite 
some ambiguity with the Mild-D and Non-D classes. 

The InceptionV3 model excels at identifying the VeryMild-D class (635/635). Nevertheless, the model has poor precision 
in identifying the mild-D and moderate-D categories. Only 537 out of the 662 Mild-D samples were accurately identified. 
Nonetheless, 101 samples were erroneously categorized as moderate-D. Furthermore, moderate-D has subpar performance, 
achieving only 506 accurate predictions and misclassifying 80 samples as mild-D. This indicates a greater degree of 
misunderstanding among classes than ResNet50 does.
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Consequently, both models categorize the very mild-D class with near-perfect precision, indicating their ability to 
distinguish between early-stage and late-stage symptoms. Nonetheless, ResNet50 outperforms InceptionV3 in 
distinguishing between the mild-D and moderate-D classes. ResNet50 outperforms the other models in feature extraction 
during the intermediate phase and in class differentiation. Both models perform well; however, ResNet50 exhibits superior 
accuracy and excels in distinguishing challenging stages, such as the mild-D and moderate-D classes. These findings 
indicate that the ResNet-based model is superior for clinical Alzheimer’s disease classification tasks where precise diagnosis 
is critical. 

Table V shows a comparison between the performance of InceptionV3 and ResNet50 with and without image 
preprocessing steps on the basis of precision, recall, and F1 score values for each model. 

 

TABLE. V. PERFORMANCE METRICS FOR EACH AD STAGE USING INCEPTION V3 AND ResNet50 WITH AND WITHOUT IMAGE 
PROCESSING. 

Class InceptionV3 ResNet50 

Precision Recall F1-score Precision Recall F1-score 

With Preprocessing 

Non-Demented 0.91 0.97 0.94 0.97 0.99 0.98 

Mild Demented 0.87 0.81 0.84 0.94 0.89 0.91 

Moderate Demented 0.82 0.82 0.82 0.96 0.96 0.96 

Very Mild Demented 1.00 1.00 1.00 1.00 1.00 1.00 

Without Preprocessing 

Non-Demented 0.88 0.93 0.91 0.94 0.96 0.94 

Mild Demented 0.83 0.77 0.80 0.91 0.85 0.87 

Moderate Demented 0.78 0.78 0.78 0.92 0.91 0.92 

Very Mild Demented 0.97 0.97 0.97 0.97 0.97 0.97 

Improvement (%) 3.41 4.36 3.52 3.35 3.60 3.83 

 

Table V shows that the application of image preprocessing techniques enhanced all the performance metrics for both 
InceptionV3 and ResNet50. The enhancement percentages range from 2% to 5%, confirming the importance of image 
preprocessing techniques such as scaling, denoising, and normalizing. These image processing algorithms enable the 
production of a more uniform picture with less noise. Consequently, they facilitate the more efficient extraction of features 
by deep learning models. Despite the minimal margins of enhancement, they underscore the importance of preprocessing 
in achieving reliable and generalizable classification performance throughout all stages of Alzheimer’s disease. 

Moreover, Table V indicates that the ResNet50 model has superior performance across almost all the metrics and 
classes. Both models exhibit flawless performance for the VeryMild-D class, with accuracy, recall, and F1-scores all at 1.00. 
Consequently, this class is readily identifiable, perhaps due to both models’ ability to recognize the distinct early-stage 
indicators. In the Non-D stage, ResNet50 achieves an accuracy of 0.97 and a recall of 0.99, surpassing InceptionV3’s scores 
of 0.91 for precision and 0.97 for recall. The data indicate that ResNet50 excels at differentiating cognitively normal 
subjects while maintaining a low rate of false positives. For the Mild-D class, ResNet50 achieves an accuracy of 0.94 and 
a recall of 0.89, whereas InceptionV3 attains a precision of 0.87 and a recall of 0.81. The F1 score of 0.91 for ResNet50 
surpasses the 0.84 achieved by InceptionV3. Consequently, ResNet50 excels in achieving an equilibrium between 
sensitivity and accuracy. The moderate-D class exhibited the most significant improvement, with ResNet50 attaining a score 
of 0.96 across all three criteria, demonstrating dominance over InceptionV3, which scored 0.82. Consequently, ResNet50 
demonstrates superior accuracy in categorizing advanced-stage dementia patients, exhibiting a reduced incidence of false 
positives and false negatives. This enhancement aligns with the confusion matrix, demonstrating that ResNet50 committed 
fewer errors in classifying the Mild-D and Moderate-D categories. 

A comparison of the two models reveals exceptional performance characteristics on the basis of their design. The 
architecture of ResNet50 enables it to handle gradients better and train deeper networks, which leads to its constant high 
accuracy in identifying all stages of AD. This allows ResNet50 to recognize subtle and complex traits essential for 
distinguishing between different illness stages. Conversely, InceptionV3 demonstrates proficiency in detecting very mild 
demented and nondemented stages, although it shows decreased accuracy in the moderate and mild demented phases. 

The complicated portions of InceptionV3, which are meant to increase efficiency and capture information at multiple 
sizes, may not identify different essential aspects as ResNet50 does. ResNet50 generally has a greater quantity of trainable 
parameters, allowing it to capture a wider range of characteristics. The macro- and micro-F1 scores were used for an 
extensive evaluation, which demonstrated that ResNet50 displayed enhanced performance and increased robustness.
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3.2 Comparison 

Owing to the multiclass and imbalanced dataset, macro- and micro-F1 scores are preferable for detecting any biases. 
Table VI shows a comparison of InceptionV3 and ResNet50 with other extant models that use the same dataset. In addition, 
this table also includes a comparison with the DenseNet model applied with the same preprocessing step of the proposed 
approach. The comparison emphasizes accuracy, macro F1 score, and micro F1 score measurements, as well as assessments 
of diverse methodologies identified in the literature. 

TABLE. VI.  ACCURACY, MICRO F1-SCORE, AND MACRO F1-SCORE COMAPRISON VALUES COMPARED TO MODELS IN 
THE LITERATURE 

 Model Accuracy (%) Macro F1-score Micro F1-score 

Proposed Approach 
InceptionV3 89.9 0.90 0.90 

ResNet50 93.9 0.94 0.96 
DenseNet 87.1 0.8 0.79 

Study [28] 
ResNet50 93.1 - - 

InceptionResNetV2 89.1 - - 
Study [39] AlexNet 82.2 - - 

 

These findings unequivocally demonstrate that the proposed ResNet50-based model outperforms other models in the 
classification of Alzheimer’s disease stages. It achieves an optimal accuracy of 93.9%, a macro F1 score of 0.94, and a 
micro F1 score of 96%. This finding indicates that the model excels not only in predicting Alzheimer’s disease overall but 
also in distinguishing levels (macro F1) and labels (micro F1). The suggested InceptionV3-based model has good 
performance, achieving an accuracy of 89.9% along with macro- and micro-F1 scores of 90%. These findings surpass those 
of current methodologies, albeit somewhat inferior to ResNet50. As illustrated in this table, DenseNet reached an accuracy 
of 87.1%. However, its macro- and micro-F1 scores are lower than those of the proposed ResNet50 and InceptionV3 
models, indicating relatively weaker performance in classifying AD stages. 

The research in [28] indicated an accuracy of 93.1% for ResNet50 and 89.1% for InceptionResNetV2. The proposed 
ResNet50 model has an accuracy that is 0.8% superior to that of the model presented in Study [28]. This enhancement 
results from the preprocessing, model optimization, and dataset organization conducted in this work. The research in 

[38] reported that the lowest accuracy of 82.2% was achieved via AlexNet. This result demonstrates that shallow designs 
inadequately capture the intricate feature hierarchies essential for multiclass AAD stage classification. The proposed 
ResNet50 architecture demonstrates superior and more consistent performance across all primary criteria, validating its 
appropriateness for the accurate and reliable classification of Alzheimer’s disease progression stages in clinical imaging 
datasets [40]. 

4 CONCLUSIONS 

The predominant type of dementia is Alzheimer’s disease (AD). Diagnosis may be achieved via several methods. The 
development of a dependable approach for the early detection of Alzheimer’s disease is increasingly crucial due to the 
increasing incidence of diagnoses. Deep learning approaches have exceptional efficacy in several domains, including 
pattern recognition and medical diagnosis. This research aims to develop an automated method for the identification and 
categorization of Alzheimer’s disease (AD). Advanced deep learning models integrated with image processing methods 
were used to provide a precise and resilient solution for Alzheimer’s disease identification and classification. Two deep 
learning models were used and compared: InceptionV3 and ResNet50. This work integrates a robust picture preprocessing 
pipeline that includes scaling, denoising, color correction, and normalization to guarantee compatibility and improve the 
input quality of deep learning models. To achieve multiclass classification of Alzheimer’s disease stages, InceptionV3 and 
ResNet50 were developed with distinct classification heads and trained via categorical cross-entropy loss. A strategy that 
meticulously partitions the data and employs comprehensive assessment metrics ensures that the model is adequately tested 
and effectively identifies early phases. The OASIS MRI dataset, which includes four phases of Alzheimer’s disease—non-
D, mild-D, very mild-D, and moderate-D—is used to evaluate the suggested methodology. Performance indicators, 
including precision, recall, accuracy, and F1 score, were used to evaluate the efficacy of the suggested technique. The 
findings indicate that the suggested technique effectively identifies Alzheimer’s disease. The ResNet50 model outperforms 
the InceptionV3 model, with an accuracy of 93.9%, a micro F1 score of 0.94, and a macro F1 score of 0.96. 
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The proposed deep learning models exhibit strong performance in identifying all four phases of Alzheimer’s disease. 
ResNet50 attains the maximum accuracy of 93.9% and exhibits flawless classwise precision, particularly in identifying 
extremely mild and moderate dementia patients. InceptionV3 yields commendable results, particularly in detecting early-
stage Alzheimer’s disease with elevated recall. These findings indicate that the models are dependable and beneficial in 
a clinical context for facilitating early and precise identification of multistage Alzheimer’s disease. The suggested ResNet50 
and InceptionV3 architectures outperform existing systems in the literature in terms of accuracy and F1-scores. These 
findings demonstrate that our framework excels in achieving balanced and robust categorization across all phases of 
Alzheimer’s disease. 

The proposed DL models, especially ResNet50, achieve strong performance in distinguishing between mild and 
moderate stages of AD. The distinctions between these stages are often complex and pose diagnostic challenges. These 
results illustrate the potential of the proposed approach to support clinicians in making earlier and more accurate diagnoses 
and thus enabling timely intervention and improved patient outcomes. 

This investigation is conducted using a single dataset. Consequently, the generalizability of these findings is restricted to 
alternative therapeutic environments, despite promising outcomes. The models may overlook domain-specific features 
pertinent to AD imaging owing to their reliance on pretrained architectures. Moreover, despite the use of preprocessing 
measures, class imbalance may continue to influence model sensitivity, especially in the latter stages of Alzheimer’s disease. 
Consequently, the suggested methodology must be evaluated on further datasets, and the problem of unbalanced datasets 
should be addressed. Knowledge distillation may be used to develop a deep learning model that is more suitable for 
environments with constrained resources. Furthermore, explainable AI may be used to elucidate the primary determinant in 
the beginning of Alzheimer’s disease. 
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