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A B S T R A C T  

Man-in-the-Middle (MITM) attacks reduce Hypertext Transfer Protocol Secure (HTTPS) to Hypertext 

Transfer Protocol (HTTP), compromising network communications to potential exploitation. Attackers 

exploit application-layer vulnerabilities, and the attack often occurs on LAN. This study addresses the 

problem by introducing a Uniform Resource Locator (URL) protection mechanism that combines 

encryption with secure key exchange. 

A browser built with Python and PyQt5 encrypts URLs before transmission. The router decrypts, 

processes, re-encrypts, and returns data securely. The Diffie–Hellman algorithm generates a new 

session key for each connection, and the Advanced Encryption Standard with Galois Counter Mode 

(AES-GCM) technique to encrypt. 

The system was tested in a VMware host-only environment under four scenarios: normal use, active 

attacker, system-only, and active attacker with the system enabled. Packet capture and timing analysis 

evaluated security and performance. The scheme achieved a 100% prevention rate against HTTPS 

downgrades. Intercepted traffic appeared as unreadable ciphertext. Average execution time increased 

from 0.05 seconds to 0.11 seconds due to encryption, but it did not affect stability. 

This research improves application-layer security independently and offers a concrete defense against 

MITM stripping attacks. In conclusion, the proposed methodology provides a pragmatic and effective 

strategy for protecting URL traffic in vulnerable local network environments.

 

1. INTRODUCTION 

The Internet has become a fundamental component of contemporary existence, significantly influencing several domains such as 

business, education, and employment [1]. It has transformed the realm of communications, reducing distances and streamlining tasks 

that once demanded considerable time and effort. One of its most significant applications is online banking, which has transformed 

the manner in which individuals and institutions conduct their financial operations [2]. In the digital era, nearly all transactions, 

whether direct or indirect, occur online. The high dependence on online services has necessitated the safeguarding of transmitted 

data to maintain its confidentiality, integrity, and accuracy[3]. 

 The increasing reliance on digital platforms highlights critical issues, including the need for strong and flexible cybersecurity 

strategies to address rising threats. cybersecurity has become a key concern, primarily due to the extensive use of financial 
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platforms, social media, and e-commerce systems that manage massive amounts of sensitive personal data [4]. In addition, the rapid 

technological advancements have raised risks, particularly the emergence of cyberattacks [5]. The recent past has witnessed 

evolutions in the cyberattack techniques, frequency and impact. This has immensely affected individuals, startups, and huge 

corporations. Data from existing studies reveal a consistent rise in attacks, with a significant surge in 2014, commonly designated 

as the “year of cyberattacks.” Without effective and consistent technical solutions, these dangers are anticipated to persist and 

escalate [6]. Each year, attacks are increasing, mainly targeting major organizations, impacting information security, business 

continuity, and customer confidence. This escalating trend reached unprecedented levels in 2014, and in the absence of global 

solutions, this trend is likely to continue [7]. 

The proposed approach addresses this deficiency by consolidating various protective layers into a cohesive structure. Unlike prior 

works that concentrate on either detection or encryption alone, this system combines a secure key exchange mechanism based on 

Diffie-Hellman, AES-GCM encryption for all network communications, and a custom browser that ensures URLs and data are 

transported securely. Modular design principles further isolate encryption and decryption operations, enhancing maintainability and 

resilience against compromise. As explained in [8], MITM attacks are among the most serious security risks, which are not only 

prevalent but also detrimental. These attacks entail clandestine interception of communications between two parties, with the 

capacity to modify or seize the communicated data. MITM attacks are typically classified into two categories: MITM sniffing, and 

MITM stripping. 

Due to their rapidly emerging significance within modern cyber threats, the purpose of this paper is to analyze MITM Stripping 

attacks. In these attacks, adversaries take advantage of vulnerabilities in security systems, which allow them to convert encrypted 

communications to unencrypted communications [9]. This allows leakage of sensitive data, including login credentials and financial 

information. A troubling aspect of MITM stripping attacks is that the victims often do not even know that their communication 

(which seems secure from their perspective) is compromised [10]. As such, this study makes the following contributions: 

 We present a methodology for protecting against MITM stripping attacks by the application of encryption techniques. 

 We utilize the Diffie-Hellman algorithm to facilitate safe key exchange between the client and the router. In addition, the 

AES-GCM algorithm is implemented for the encryption and decryption of network communications. 

 A virtual environment that replicates the attack scenario is created, comprising a client device (Windows), an attacker (Kali 

Linux), and a router (OpenWRT).  

 We develop a bespoke browser that encrypts URLs and transports them securely. 

 We isolate the encryption and decryption procedures into distinct files in alignment with a security-oriented design. 

The study is aimed at developing, deploying, and systematically testing a system that thwarts MITM stripping attacks by maintaining 

secure channels, encrypting messages, and exchanging keys safely. The value in this work is both practically and theoretically 

motivated. The system aims to create a new reference model that leverages high levels of encryption, secure key exchanges, and the 

modularity allowed by the proposed framework, thus providing an enhancement to protective measures against future advancements 

in cybersecurity of real-world networks, while also providing a reference model for future research and advancements in the study 

of both attack prevention, as well as secure communication. 

The paper is structured as follows: Section 2 addresses the design of the virtual testbed environment, the client, attacker, router 

nodes, and the Host-Only network configuration. Section 3 covers the Python-based encryption system in a custom browser, together 

with the implementation strategies for all four test scenarios. On the other hand, Section 4 presents the proposed technique, which 

comprises end-to-end encryption using AES-GCM and secure key exchange using the Diffie-Hellman algorithm. Section 5 outlines 

the implementation specifics, encompassing the network architecture, operational protocols, and system setup. On the other hand, 

section 6 outlines the trial results across four specific scenarios and assesses performance metrics, such as reaction time and traffic 

attributes. Section 7 delineates the security validation of the proposed system.   Section 8 closes this report and delineates prospective 

directions for further research. Section 9 delineates the limitations. 

2. PRIMITIVE TOOLS AND ALGORITHM 

2.1 Diffie-Hellman algorithm 

The Diffie-Hellman key exchange protocol is one of the first methods used in public-key cryptography. It allows two parties to use 

an insecure connection to exchange the agreed-upon key in a secure manner. It involves two parties selecting a large prime number 

(p) and a base (g) for their Diffie-Hellman session. Each party selects their private key, then generates the corresponding public key 

from this private key. Thereafter, each entity shared their public key with the other entity. This public key is deployed to compute 

the shared secret key (based on entity’s private key and the received public key). This shared secret key is treated as an anonymous 

shared secret and hence cannot be intercepted. The Secure Socket Layer (SSL)/Transport Layer Security (TLS) and Secure Shell 

(SSH) are two main protocols that utilize this key exchange process as part of their protocol specifications. This helps create a more 

secure connection for data transmission in a possibly adverse environment [11]. 

Numerous studies have examined the Diffie-Hellman algorithm’s mathematical principles and practical applications, highlighting 

its advantages and disadvantages. Its major problem is its susceptibility to MITM attacks, in which an attacker can intercept and 

change public keys exchanged between users. To address this problem, previous researches have proposed combining Diffie-

Hellman with other cryptographic techniques, such as digital signatures or RSA encryption. Test results indicate reduced execution 

time (0.0056 seconds compared to 0.0088 seconds for the classic Diffie-Hellman algorithm) and enhanced resistance to active attack 

[12]. The security of an algorithm depends primarily on the mathematical complexity of the discrete logarithm problem (DLP) within 
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cyclic groups. Therefore, the selection of significant prime numbers and appropriate generators is essential to maintaining 

cryptographic integrity. Several studies have investigated the relationship between the complexity of solving the Diffie-Hellman 

problem (DHP) and DLP, suggesting reduction-based methodologies for assessing the security of systems based on both problems 

[13].   

This study uses the Diffie-Hellman method due to its logical framework, strong theoretical foundations, and importance in modern 

cryptographic systems. In addition, its integration with diverse encryption algorithms enables robust key exchange processes, which 

resists eavesdropping and manipulation threats. This renders it suitable for securing communication in untrusted and dynamic 

environments [14]. 

Note: The Diffie-Hellman method was used to make a dynamic session key between the client and router without the need for key 

management ahead of time. This solved the key management problem. This method makes sure that a new key is produced for each 

communication session and keeps the previous sessions hidden. This makes it less likely that someone will be able to access or use 

them, even if they find the next key. 

2.2 AES-GCM Algorithm   

The AES-GCM encrypt algorithm was selected due to its numerous benefits. For instance, it provides robust security and complies 

with the internationally recognized AES standard. In addition, it offers the fastest speed and allows real-time processing[15], and 

has widespread use in network protocols, such as TLS and Internet Protocol Security (IPsec). Moreover, the Diffie-Hellman method 

creates a shared secret key between client and router. Another significant benefit is that it is directly usable in encryption so that 

during a network transfer [16], both encryption and authentication are achieved. It also deploys number used once (nonce) values 

that are used in the encryption algorithm to ensure uniqueness and non-repetition in each encryption process. 

Note: AES-GCM was chosen because it is faster and uses less computing power than public-key approaches. It both encrypts and 

authenticates in one step and utilizes a nonce to make each message unique. This means that you can't use the same message twice 

and that hacking is tougher. This means that it gives you good security that works well. 

2.3 Tools 

2.3.1 VMware Workstation 17 Player 

VMware was employed to create a virtual environment consisting of the following three principal systems: 

 Router: We configured a virtual router based on OpenWRT, which receives and processes encrypted data between the 

client and the attacker. 

 Client/Victim: This is a Windows-based virtual machine that represents the protected user. It is used for navigation and 

to transmit encrypted data. 

 Attack: This is represented by a virtual machine running Kali Linux that performs MITM Stripping attacks to determine 

the effectiveness of the proposed solution. 

- VMware network configuration: Two networking types were created to connect the virtual machines. 

- Host-only network: Created a connection between the client and the attacker, as well as the connection to the router 

within a confined internal network. Static IP addresses were assigned to each device to ensure consistent communication. 

- Bridged network: Configured on the router to enable connectivity to the external internet during practical testing 

scenarios. 

2.3.2 Wireshark software 

Wireshark is a network protocol analyzer that captures, examines, and analyses network traffic in real-time. It enables comprehensive 

packet-level analysis, making it possible to identify vulnerabilities, monitor network activity, and detect potential security threats. 

2.3.3 Python and utilized libraries  

All procedures related to key exchange, encryption, and decryption were executed using Python 3.11. The following libraries were 

employed: socket for enabling inter-device connectivity; cryptography for executing AES-GCM encryption; pyDH for performing 

Diffie-Hellman key exchange; and PyQt5 to create a custom browser on the client device. 

3. RELATED WORKS 

In this section, we discuss some of the previous works dedicated for MITM mitigation. For instance, the research in [17] investigated 

SSL-based session hijacking attacks, with special focus on SSL stripping. The authors categorized current preventive mechanisms 

against SSL stripping attacks as client or server-side solutions. This classification highlights the strong dependence of existing 

defenses on lower-layer mechanisms, which limits their ability to secure data at the application level. The various components in 

their system included data proxies, static Address Resolution Protocol (ARP) tables, Extended Validation Secure Sockets Layer (EV 

SSL) certificates, two-way authentication, HTTPSLock, SSLock, HTTP Strict Transport Security (HSTS), ISAN-HTTPS port, ShS-

HTTPS port, and cookie proxies. Among the tools and technologies deployed included browser caching systems, web script-based 

solutions, and ARP-based alternatives. Regarding performance, the several fixes showed different degrees of success. Strong 

security against vulnerabilities came from two-factor authentication and HSTS. Although their approach has various shortcomings 
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(such as sensitivity in initial user confidence and significant implementation costs), it provides a fundamental knowledge of the 

attack concept and its execution. In addition, these techniques show notable restrictions on browser compatibility, usability issues, 

and resource economy problems. Moreover, the authors noted that no best measure would help reduce all dangers while maintaining 

user-friendliness and cost-effectiveness. However, the study did not address how URL requests themselves can be encrypted or 

protected at the endpoint before entering the transport layer, which represents a clear gap that this research aims to fill. 

This research done by Chordiya et al. [18] discusses the central topic of MITM, and specifically HTTPS session hijacking attacks 

enabled by SSL stripping and ARP spoofing undergraduate. The authors showed that it is possible to capture and modify secure 

communications between clients and servers using the ARP and SSL weaknesses. The study mainly focused on demonstrating the 

feasibility of the attack and did not extend its scope to evaluate defense strategies or protocol-level improvements. The target was 

Ubuntu, and Kali Linux was the attacking machine. The custom scripts were run on a virtual machine environment using Wireshark 

and Ettercap as tools. The method uses SSL stripping to change the HTTPS connection to a process referred to as HTTP cache 

poisoning. In addition, attackers could redirect traffic and capture sensitive data, such as unencrypted intermediate login credentials. 

Thus, the method highlighted the vulnerability of HTTPS connections to MITM attacks. However, this method has some specific 

limitations, such as requiring the attacker to be on the same local network as the victim. In addition, it cannot bypass HSTS security. 

Another limitation is that the evaluation focused only on the attack scenario without analyzing how different network configurations 

or endpoint-level protections could affect the success rate, which limits the generalizability of the findings. Nonetheless, this study 

highlights attack paths and helps with understanding HTTPS vulnerabilities. Nonetheless, it lacks a description of defensive methods 

for these types of attacks, which limits its general applicability and usability in both practical and academic cybersecurity contexts. 

The lack of defensive strategies identifies a definitive research gap that supports the proposed new strategies focused on endpoint 

security and encryption at the application layer. 

The research by Jonas et al. [19] dealt with SSL stripping and addresses the crucial problem of session hijacking vulnerabilities. The 

study approached the issue from a usability and user-awareness perspective rather than introducing a fundamental change at the 

protocol or application layer. In addition, it offers an ideal solution that combines security with usability. Using a Naive Bayes 

classifier, the authors developed a system to assess websites, including multi-tiered warning messages based on on-site security 

relevance. They employed machine learning methodologies to assess user behavior and website assessments. This approach utilizes 

ongoing rating adjustments informed by user activity to assess a 50% regression threshold via split-half reliability testing and 

correlation analysis. The methodology incorporates machine learning systems, exploratory methods, and statistical analysis. 

Basically, it adapts through iterative learning from human input. While this behavioral approach provides value in user education, 

it does not address how attackers can exploit lower-layer weaknesses to bypass browser-based warnings, leaving a critical blind spot 

in actual network attack scenarios. Its primary benefits include enhanced security for critical websites, reduced superfluous 

notifications for less significant sites, and the ability to educate individuals on safe browsing practices incrementally. Nonetheless, 

it depends on unrefined datasets and is vulnerable to interference during execution. In addition, it has complexities during installation 

and can potentially post false positives and negatives during the learning period. Another limitation is the lack of evaluation against 

active stripping attacks in real networks, which restricts the ability to verify the robustness of the proposed solution beyond simulated 

user environments. This creates a clear gap for mechanisms that provide direct application-layer protection independent of user 

behavior.  These setbacks may impact overall security effectiveness and user experience. 

The study by Duddu et al. [20] addresses the primary concern of MITM attacks, particularly SSL stripping techniques that undermine 

HTTPS security. Their focus remained largely on reinforcing existing transport-layer defenses rather than introducing new protective 

measures at the endpoint or application layer. The authors outlined the approaches to protecting against SSL strip attacks while 

considering weaknesses related to self-signed SSL certificates. This research looked at multiple attack vectors, which included ARP 

spoofing, and suggested countermeasures such as HSTS. The results indicated that HSTS and trusted certificate authorities could 

significantly reduce the risk of MITM attacks. While effective in controlled environments, these measures depend heavily on strict 

browser support and correct server configurations, which creates deployment inconsistencies in real networks. The main benefits 

are protection of HTTPS connections and a better understanding of certificate validation. The paper not only offers valuable methods 

for stopping SSL strip attacks but also considers some possible ways to improve HTTPS security systems. However, challenges still 

exist with the widespread deployment of HSTS, which limit its practicality. In addition, the lack of technical details in its 

implementation strategy hampers replication. Another limitation is the absence of evaluation against adaptive attackers capable of 

exploiting endpoint behavior or mixed-content scenarios, which leaves gaps in understanding real-world attack resistance. In 

addition, practical significance was diminished as the research limited itself to LinkedIn as a platform. This limited its value and 

lacks clear, rational means of reducing attacks. This narrow scope and focus on transport mechanisms highlight the need for 

complementary application-layer protections, which this work aims to address. 

The research by Adjei et al. [21] describes an underlying problem caused by ARP spoofing and Dynamic Host Configuration 

Protocol (DHCP) - based MITM attacks on LAN. Their work mainly focused on detecting and blocking network-layer attacks but 

did not propose mechanisms that operate at the application level, which leaves higher-layer data exposed if network defenses are 

bypassed. To effectively mitigate this problem, the authors presented a detailed prevention plan, which combines DHCP monitoring 

and ARP spoofing. Using technologies such as GNS3 and Wireshark, the authors implemented the attacks, detection, and mitigation 

processes with experimental simulations. They presented a flexible methodology that would work successfully on a variety of 

networks and mitigate SSL stripping among common local area attacks, such as the ping of death (PoD). Its limitations include 

potential conflicts with network configurations, as well as issues related to on-site implementation. The authors adopted a broad 

range of software tools through multiple operating systems to establish a complete experimental technique that included initiating, 
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detecting, and mitigating. While their approach may be methodical, it requires maintaining constant monitoring, and for full control 

of the network infrastructure, it might not be employable, for example, with resource-limited routers with a lack of administrative 

access. Also, doing so puts extensive demand on computational resources to monitor everything in real-time. However, this approach 

may require significant processing capacity for real-time monitoring. In addition, its efficiency may be affected by dynamic network 

conditions monitoring. In addition, its efficiency may be affected by dynamic network conditions. One shortfall is that there is no 

analysis on how the defenses would behave under adaptive attackers and/or encrypted traffic, which limits the defenses' applicability 

outside of the controlled lab settings. Nevertheless, this study provided the foundational understanding necessary to develop effective 

security plans for mitigating SSL stripping and related MITM attacks in local area networks. This focus on network-layer mitigation 

highlights the absence of complementary application-layer protection, a gap that this research seeks to address. 

Kampourakis et al. [22] investigated MITM attacks on HTTPS by narrowing down the problem to gaps in behavior, configuration, 

and advanced circumvention techniques that defy HSTS security. This approach focused on detecting vulnerabilities at the browser 

and configuration level without proposing corresponding protection mechanisms, leaving practical defensive strategies unexplored. 

The authors advanced the traditional MITM attacks by carrying out some real-life demonstrations, with the intention of providing 

approachable visualizations for new and alternative attack methods. This included developing reasonable attack vectors, attacking 

the current browsers and systems, and identifying browser vulnerabilities such as HSTS variations, embedded HSTS exploits, and 

other weaknesses based on particular browsers. They showcased the gaps that exist in the security measures put in place within the 

HTTPS system, and the loose user engagement with HTTPS implementations. Some noted limitations include the specific assumed 

mid-user configured versions of the misaligned browser, as well as the mid-user versions that do not represent many real-world 

scenarios. These assumptions reduce the validity of the results externally and limit their applicability to broader network 

environments. The major contributions of this study included the aggressive examination of contemporary MITM and man-in-the-

browser attack strategies, as well as the lack of supporting research to address vulnerabilities in HTTPS implementations. The 

authors point out that despite moving towards closing security gaps in HTTPS, it is troubling that that there are no approaches to 

proactively mitigate vulnerabilities. This lack of proactive protection strategies highlights a gap in application-layer encryption 

mechanisms that can work alongside existing browser protection mechanisms, which this research seeks to address. 

To address an important issue of MITM attacks on mobile applications, Ali et al. [23] analyzed the limited abilities of bad SSL/TLS 

implementations on Android and iOS systems. The study focused on highlighting vulnerabilities in mobile application 

communications without providing protection mechanisms or a systematic assessment of potential defenses, leaving critical gaps 

unaddressed. The authors investigate how attackers take advantage of mobile applications to collect private user data passing through 

communication channels. To demonstrate the effectiveness of these attacks, they deployed benign software on non-rooted devices, 

using Wireshark and proxy servers as traffic interceptors to alter data flows. They identified critical vulnerabilities in the security of 

mobile application interfaces, which were a significant focus of their analysis. This methodology has shown serious flaws but 

remains descriptive, providing no structured methodology for mitigating them or integrating with secure application layer 

frameworks. However, their lack of definitive solutions or countermeasure frameworks was the major drawback of their work. 

Nevertheless, the work aimed to raise awareness of SSL and TLS vulnerabilities in mobile applications, and paved the way for 

further studies whose goal is directed towards proactive and preventative research. The study also ignored dynamic attacker 

behaviors, such as adaptive MITM malware or scenarios involving compromised local networks, which limits the practical 

applicability of the results. The restrictions of this study include the dearth of sophisticated solutions, lack of attention to malware, 

or rooted devices apps, as well as the absence of comparative studies on mobile devices that would be very helpful in advancing 

knowledge on mobile devices. In addition, this research also assumes that mobile devices do not have MITM malware, further 

compounding its limitations. Such assumptions reduce the external validity of the study and highlight the lack of a robust, deployable 

protection mechanism at the application layer for mobile platforms. The authors point out some inconsistency where hardware 

architectures are not sufficiently secured due to the assumption made during the construction of mobile apps, regarding the effective 

security of SSL and TLS. 

Fereidouni et al [27] examines flaws that could be exploited in multiple levels of the Internet of Things (IoT) architecture. This work 

provides a broad overview of vulnerabilities but does not provide a concrete defensive framework, especially at the application layer 

where endpoint protection remains limited. In addition, the authors studied the limitations faced by resource-constrained devices in 

the context of threats posed by MITM attacks in the Internet of Systems. The study suggested that a comprehensive review of the 

existing attack vectors and alternative defense measures be conducted. In addition, other techniques such as rate limiting, timers, 

and machine learning based detection systems need to be deployed to create checks for the MITM defense. These proposals remain 

conceptual and are not accompanied by practical deployment models or empirical evaluations in heterogeneous IoT environments. 

Their methodology included examining traditional machine learning models such as logistic regression, random forests, and decision 

trees. In addition, state-of-the-art techniques such as genetic algorithms and bidirectional long short-term memory (BiLSTM) 

combined with dimensionality reduction via principal component analysis (PCA) were studied. The findings indicate that classical 

models can achieve 99% accurate results on simpler datasets. However, this high accuracy is achieved under controlled conditions 

and does not reflect the operational diversity or resource constraints typically found in IoT networks, calling into question the 

generalizability of the results. However, the robustness and complexities presented by IoT networks and the diversity across these 

networks limit its practical applications. In addition, some barriers do exist, such as the absence of uniform IoT security terminology, 

dataset accessibility, and the tradeoff of security mechanisms and the performance of the device itself. The value of this research 

includes the emphasis on new technologies such as deep learning, which will continue to improve the detection ability, and the 

proper analysis of IoT MITM vulnerabilities. The study demonstrates that more research needs to be done on scalability and 
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adaptability of networks in the IoT’s dynamic scenarios. As such, there is no conclusive way to address the gaps for all situations. 

This highlights the absence of a unified, lightweight, and deployable security mechanism that can operate at the application layer of 

IoT systems.  This study enhances the understanding of the MITM vulnerabilities, as well as the countermeasures for IoT security 

threats. It produces meaningful insights that contribute to the improvement of security and resilience of IoT mechanisms.   

 

Previous studies on the prevention of MITM attacks have primarily focused on prevention at both the transport and network levels, 

especially SSL stripping and ARP spoofing. HSTS enforcement, two-factor authentication, certificate validation, network traffic 

monitoring, and user behavior alerts are examples of the methods that researchers have experimented with to slow attacks down or 

to protect the user from their exposure. Typically, researchers have used some combination of existing tools (Wireshark, Ettercap, 

machine learning classifiers, etc.) to identify shortcomings in each of these techniques. While these steps have made users more 

aware of identifying attack vectors, they each have their own limitations. Most solutions depend a lot on security at lower layers, 

are sensitive to how well browsers function together, need a lot of money to install, or presume that networks are controlled. Most 

significantly, they don't protect application-level URL request encryption, which makes endpoints easy targets for direct attacks. 

The proposed approach fills this gap by adding URL-level encryption before transmission. This provides strong application-level 

protection that works regardless of network conditions or user behavior. This method stops SSL stripping attacks at the source, 

makes endpoint security better, and works with existing transport layer protocols. It is a practical and deployable solution that can 

protect against real-world MITM threats on a wide range of systems and devices. 

 

Unfortunately, there is a lack of empirical data or practical analysis from the identified solutions. In addition, these studies assume 

that all devices have the capability of implementing complex solutions, notwithstanding their limitations. Table 1 presents a summary 

of some of the outstanding works in this domain. 

TABLE I: SUMMARY OF RELATED WORKS 

Source 

Y
e
a

r 

Method || Algorithm Used Strengths Weaknesses 

Hossain et al. 

2
0
1
8
 

Date proxy, static ARP table, EV 

SSL certificate, two-way 

authentication, HTTPS Lock, 
SSLock, HSTS, ISAN-HTTPS 

port, SHS-HTTPS port, and 
cookie proxy. 

Explains the strengths and weaknesses of 

each security method, as well as practical 

steps for implementing the attack using 
opensource tools such as SSL Strip. 

Lack of a comprehensive solution that 

effectively mitigates all risks while 

maintaining efficiency and ease of use. 

Chordiya et al. 

2
0
1
8
 

ARP spoofing, SSL stripping, 

Ettercap, SSL strip 

Illustrate attack paths and raise 

awareness of HTTPS vulnerabilities. 

Insufficient focus has been placed on 

preventative solutions for such attacks, 

diminishing their practical and educational 
importance. 

Jonas et al. 

2
0
1
9
 Naive Bayes algorithm for 

keyword classification based on 
their content and URLs 

Enhancing security for core websites, 

can educate consumers on safe browsing 
practices in a gradual manner. 

Reliance on primary datasets and potential 

noise during early deployment stages. 

Duddu et al. 

2
0
2
0
 

ARP poisoning with HSTS and 

HSTS, CA validation 

Enhance security with HTTPS 

connections; increase vigilance 

regarding certificate verification. 

The implementation method lacked 

technical details, making replication 

difficult, quantitative results demonstrating 
the effectiveness of the attack were absent. 

Adjei et al. 

2
0
2
1
 

A solution developed using DHCP 

Snooping and Dynamic ARP 
Inspection. 

An overall license that includes 

initiation, detection, and mitigation as 
part of a foundation that requires 

software that could be used over multiple 

operating systems. 

The approach may require a lot of 

processing resources for real-time 
monitoring, and the effectiveness may also 

be reduced in very dynamic networking 

environments. 

Kampourakis et 

al. 

2
0
2
2
 

Browser attack testing and 

scenario analysis 

It’s a comprehensive examination of 

contemporary MITM attack 

methodologies and focuses on 
uncovering overlooked vulnerabilities in 

HTTPS implementations. 

It doesn’t offer complete solutions, but 

works more to reveal and describe 

vulnerabilities. 

Ali et al. 

2
0
2
2
 

Mobile app SSL/TLS analysis and 

traffic interception tools 

Increases awareness of SSL/TLS 

vulnerabilities found in mobile 
applications, sets the stage for future 

research concerning taking measures for 

security protection. 

Inadequate countermeasures, limited focus 

on scrutinizing benign applications. 

Fereidouni et al. 

2
0
2
5
 

Multi-layer with deep learning 

algorithms such as Random 

Forest, Autoencoders, LSTM, and 
PCA. 

Thorough analysis of IoT-specific 
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4. THE PROPOSED SCHEME 

This model tackles the MITM stripping attack problem through five discrete and sequential phases: initialization, generation and 

key exchange, client-side URL encryption, data transmission to server, and response transmission to the client. The penultimate 

stage involves the router sending data to the server, which then creates some response. The encrypted response is then sent to the 

client. To ensure connection integrity and prevent any attempts to intercept or modify the data, each phase is built upon the previous 

one, as demonstrated in Figure 1. Table 2 presents the symbols and notations used throughout this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structure of the proposed technique for the MITM stripping attack 

 

TABLE II: SYMBOLS AND NOTATIONS 

Notation Description 

g, p Diffie Hellman initial parameters 

C Client 

R Router 

S DNS Server 

WS Web Server 

E AES-GCM encryption algorithm  

D AES-GCM Decryption algorithm 

a, b Private keys 

A, B Public Key 

DQ DNS Query which contains domain name  

DR DNS Reply which contains IP of the Web server 

URL Uniform Resource Locator which contains the protocol 

1. Key Generation) Diffie-Hellman) 

2. Send Public Key 

3.  Key Generation (Diffie-Hellman) 

4.  Send Public Key 

9. Process the request 

10. Send the Response 

11. Response Encryption 

12. Send Response 

13. Decrypt Response 

14. recere IP of required Domain 

15. Send https request to web Server 

5. URL Encryption 

6. Sending Encrypted URL 

7. Decrypt URL 

8. Send URL 
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QID Query ID 

HTTPS req HTTPS Request contain URL 

HTTPS resp HTTPS Response contain HTML 

 

Protocol 1: Execution summary 

C: Generate (a)  

Compute (A = ga mod p) 

C → R: A 

R: Generate (b)  

Compute (B = gb mod p) 

Compute (K = Ab mod p) 

R → C: B 

C: Compute (K = Ba mod p) 

Generate Nonce (n) 

EU= Ek,n(URL, QID) 

Browser Generate (DQ) message 

C → R: DQ 

R: Generate Nonce (n) 

Dk,n(EU) 

Append URL to DQ 

R → S: DQ 

S → R: DR 

R: Generate Nonce (n) 

EU= Ek,n(DR, QID) 

Append EU to DR 

R → C: DR 

C: Dk,n(EU) 

Obtain IP 

Generate HTTPS req 

C → WS: HTTPS req 

WS → C: HTTPS resp 

C: Browser Display website page 

Where: nonce (n) = HMAC (H(K)+ index) 

Phase 1: Initialization phase 

This phase configures the primary connection between the client (Windows) and the router (OpenWRT). The main aim is to generate 

two identical values (P and G) in the Diffie-Hellman key exchange algorithm: 

 P: a Large prime number representing the domain for the computations performed. 

 G: an integer that is comparatively lesser than P, designated as the generator of a numerical set. 

The numbers must be congruent before being communicated between the two parties, as any disparity will hinder the generation of 

a shared key. These numbers are either generated randomly at a specified moment on either side or carefully chosen. Upon execution, 

both parties become ready to proceed to the next phase. The initialization phase aims to provide a dependable mathematical 

framework that can later be employed for data encryption and decryption. 

Phase 2: Generation and Keys Exchange 

After the generation of the P and G values, the client and router perform the key generation step of the Diffie-Hellman algorithm. 

In this approach, each member generates a private key, exchange the related public values, and compute the shared key. The key is 

hashed (calculated using a one-way function that utilizes numbers that cannot be decoded with the available computer power at the 

current time). The final key is not necessarily communicated; both parties derive it separately. As demonstrated in Figure 2, this key 

is used to encrypt and decrypt all the communications. As such, it serves as the main assurance of session confidentiality between 

the connection and the router. 
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Key Generation (Diffie-Hellman)

Windows client (victim) Router Open WRT

Generate parameters 
P, g, a

Generate parameters 
P, g, b

Generate Public Key
A = g^a mod p

Generate Public Key
B = g^b mod p

Send Public Key (A)

Send Public Key (B)

Generate shared key
shared key     B^a mod p

Generate shared key
shared key     A^b mod p

 
Figure 2: Key generation and exchange 

Phase 3: Encryption and transmission of URLs 

Encryption begins after a user submits a URL within the custom browser. Prior to encryption, the query is paired with a unique 

query-id, which is an authentication and sorting identifier on the router side. The AES-GCM algorithm is then applied to this data 

for encryption. The random token is not arbitrarily generated or exchanged across the network. Rather, it is derived deterministically 

by calculating the Hash-based Message Authentication Code (HMAC) of the shared session key using a fixed hash-based base-key. 

The final nonce is calculated as follows: The base-key is a cryptographic hash (for example, Secure Hash Algorithm 256-bit (SHA-

256)) of the shared key generated from Diffie-Hellman. On the other hand, the index is an incremental integer counter for each 

query, starting at zero. The final encrypted data, which includes the query and query-id, is packaged in JSON format and sent over 

User Datagram Protocol (UDP) to the router using a similar method as in Figure 3. 
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Sending Encrypted URLs  to router

Windows client (victim) Router Open WRT

shared key 

Encrypted URL

shared key 

Generate nonce

AES-GCM encrypted  {URL , query_id} transmitted via UDP

URL

Decrypt URL

Generate nonce

 

Figure 3: Sending encrypted URLs 

For enhanced security, nonce values are never transmitted over the network. Both parties independently generate the same nonce by 

taking the shared session key (base-Key) and producing a hash with a mutually agreed-upon query index. This guarantees forward 

security and alleviates the risks associated with nonce reuse or interception. 

Phase 4: Data transmission to DNS server 

In this phase, the router receives the URLs, which then deploys the AES-GCM algorithm to decrypt these URLs. In addition, the 

router possesses the decryption key and nonce. Subsequently, the router obtains the request from the DNS server and transmits it to 

the client. Basically, the DNS server receives the request, processes it, and then sends the result to the router, as demonstrated in 

Figure 4. 

 

Forwarding Encrypted URL and Retrieving Response

DNS server

shared key 

 sends the URL

Decrypt URL

Router Open WRT

 Process the request

DNS server response containing the result of a URL to an IP address

Response Encryption

 

Figure 4: Data transmission to DNS server 

Phase 5: Management of encrypted responses 

In the final stage, upon getting the result from the DNS server, the router promptly encrypts it using the same shared key generated 

in the second stage. Next, the data is sent over a secure layer with AES-GCM encryption and a new nonce. This is followed by the 

transmission of the web request towards the client machine. Upon getting this request, the client retrieves the key from the temp file 

and deploys the nonce to decrypt the message. Once the client has deciphered the content retrieved from the DNS server, it forwards 
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an HTTP/HTTPS request to the web server. Basically, it uses the IP address to obtain the contents of the website, which is then 

displayed in the client’s browser. After this, the connection comes to its end and the session is now considered fully active. Figure5 

represents an active session where there has been no attempt by an intermediary to change or alter the contents of this session. 

 

Forwarding Encrypted Response to client

Windows client (victim) Router Open WRT

shared key shared key 

AES-GCM encrypted Response {ciphertext} transmitted via UDP

Decrypt  Response

Response Encryption

Derive request from response

Display Content in Browser

 Web server

HTTPS Request to Web Server

Receive HTTPS Response

Generate nonce Generate nonce

 

Figure5: Transmit HTTPS response to the client 

5. IMPLEMENTATION 

This section provides the detailed description of the network architecture, explains the practical implementation steps, explains the 

proposed solution to the MITM stripping attack problem, and analyzes its effectiveness. 

5.1 Network Model/Architecture 

In this work, a Virtual Local Area Network (VLAN) was built in a VMware Workstation 17 Player environment to simulate a MITM 

stripping attack and test the proposed solution under semi-realistic conditions. There are three core nodes in the proposed network 

model: the client, attacker, and the router. Here, the client is running a Windows 10 operating system, running a user conducting 

searches in a custom browser. On the other hand, an attacker is a Kali Linux system running MITM attack applications, including 

SSL Strip and Ettercap. On the flipside, the router comprises an OpenWRT system modified with Python scripts for Diffie-Hellman 

key exchange and AES-GCM message decryption. 

The router gets internet connectivity from the physical computer via a bridged network. All devices can communicate with each 

other through the router's host-only network, isolating the entire environment from the outside internet. Therefore, the router serves 

as the source of these communications. Here, the client device runs a specially designed Python browser, using the PyQt5 framework. 
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Using a shared secret key generated using the Diffie-Hellman protocol, this browser encrypts URLs before sending them to the 

router via a specific port (1650). The network structure is illustrated in Figure 6. 

 

`

 IPV4 Address 192.168.96.99

 MAC Address: 00:0c:29:c8:e2:ca

 IPV4 Address: 192.168.96.130

 MAC Address: 00-0C-29-DC-AA-2D

 Default Gateway: 192.168.96.99

 DNS Servers: 192.168.96.99

 NetBIOS over Tcpip: Enabled

 IPV4 Address: 192.168.96.131

 MAC Address   00 0 c  29 17 df b 3 

 Default Gateway: 192.168.96.99

 DNS Servers: 192.168.96.99

Router
Client

MITM Stripping attack

 IPV4 Address: 192.168.0.118

 MAC Address:  8A-CA-33-3C-2F-F3

 Default Gateway:  192.168.0.1

wan

lan

 
Figure 6: Network model 

The router serves as the center node in the network, receiving all connections from client devices. To enable the attack 

employing protocol corruption methods (ARP spoofing) and in an effort to diminish the encryption level (SSL stripping) prior 

to and subsequent to the implementation of the proposed system, the attacker’s equipment is situated on the same subnet. 

5.2 Execution procedure 

The proposed method was implemented in a carefully designed simulation environment that mimics a real LAN. This environment 

consists of a client computer (Windows), an attacker computer (Kali Linux), and a custom router running OpenWRT. This system 

aimed to evaluate the system’s effectiveness against MITM stripping attacks across four phases: scenario1 (ideal environment), 

scenario 2 (ideal environment with an active attacker), scenario 3 (the proposed system environment), and scenario 4 (environment 

with an active attacker and the proposed technique). 

The system is built using Python, with PyQt5 being used to create a custom web browser interface that allows URL entry. These 

URLs are encrypted using the AES-GCM algorithm, with both a shared key (pre-generated via Diffie-Hellman key exchange 

between the client and router) and a nonce. This ensures that the result of each encryption operation is different, even if the same 

link is repeated. The base key and nonce are generated as follows: 

base_key = hashlib.sha256(shared_key).digest() 

nonce = HMAC (base_key, index) 

After the URL and query-id are encrypted, the data is encapsulated into a JSON structure containing a cipher-text as follows: 

payload = json.dumps ({"ciphertext": encrypted_ciphertext_hex}).encode () 

This data is then converted to bytes and sent over UDP as follows: 

sock.sendto(payload, (ROUTER_IP, ROUTER_RECEIVE_PORT)) 

Upon receiving the response from the router, the browser decrypts the data (URL) using the same key and new nonce, as follows: 

response_dict = decrypt_data (shared_key, nonce, ciphertext_response) 

The router’s role in the proposed system, it receives encrypted data (URL) from the client via UDP and decrypts it using the shared 

key and the same AES-GCM algorithm and generates a new nonce that exactly matches the nonce that was generated by the client. 

The decryption process relies on extracting the ciphertext from the received packet, as on the client side: 

data, addr = server.recvfrom(4096) 

nonce = HMAC(base_key, index) 

plaintext = AESGCM(shared_key).decrypt(nonce, bytes.fromhex(ciphertext_hex), None).decode() 
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After decryption, the router processes the request, re-encrypts the result using the same key and nonce, and then sends the encrypted 

response back to the client. This process ensures that the data is protected from attackers. It also completes the communication 

between the client and router, regardless of an attacker’s presence on the network. 

5.3 System Resource Consumption 

Central Processing Unit (CPU) and Random Access Memory (RAM) usage were measured to evaluate the system’s load under two 

conditions. The first is normal operation. The second is with an active attacker. The focus was on the Python process that runs the 

encryption and communication functions. Measurements were taken using Windows Task Manager on the client machine. This tool 

gives direct readings for each running process without affecting performance. Monitoring only the Python process allowed the 

system load to be separated from background activity. 

For each condition, two readings were taken. The first was before starting encryption and transmission. The second was at peak 

activity during data exchange. This showed how much load the security functions add during operation. Measurements were 

repeated several times in the same virtual setup to keep conditions stable. The average values were plotted to compare CPU and 

RAM use between the two conditions. The data shows higher CPU and memory usage when an attacker is active. The extra load 

comes from encryption and verification. The increase stays within reasonable limits and does not reduce system stability. As 

shown Figure 7 and Figure 8. 

 

 

 

Figure 7: CPU use during application execution. 

 

 

 

 

Figure 8: Memory use during program execution. 
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6. RESULTS 

6.1  Execution 

To assess application functional and security performance under many varying scenarios, this section presents the results of the 

systematic tests performed across four environments. These scenarios include the presence of an attacker, the absence of an attacker, 

and turning on a specialized encryption mechanism, and measuring two elements: Query/Response Integrity; and execution time. 

To guarantee measurement precision in each instance, all values were meticulously captured using Wireshark. The subsequent sub-

sections illustrate the outcomes derived from the identical setting throughout the four situations. 

6.1.1 Scenario 1 (ideal environment) 

The first test evaluated the system’s empirical performance in its basic form, in an ideal environment free of assailant or extra 

encryption. This test sought to track data flow between the client and the router during browser use. The following steps are followed 

during this testing: 

Step 1: Set up the connection in VMware environment using a Host-Only network. Basically, the client and router created a limited 

local environment for complete data traffic management and guarantee total isolation from the internet. 

Step 2: Run Wireshark on the client's network interface to track all incoming and exiting packets, especially with regard to HTTP 

and HTTPS protocols. 

Step 3: In Google Chrome, input a search query: http://www.iana.org/domains/example. 

Step 4: After sending the request, the packets are tracked using Wireshark. 

Step 5: Using Wireshark's time analysis tools, the execution time and size are accurately calculated. 

Step 6: Send the request (URLs) as plaintext using HTTP. During this process, the UDP protocol is deployed without any security 

layer assigned by the proposed system. 

Step 7: At the end, all details are recorded for comparison with other cases. Table 3 shows the obtained results. 

 

Table III: Results for ideal environment 

 

 

 

 

 

 

 

 

Table 3 shows the results obtained when queries were run in a normal setting without any attacks or encryption. The first row had 

the longest execution time since the system was just starting up, which caused a little delay. The other rows show that replies are 

quick but not safe. This is because the adversaries could easily read all of the data since it is sent in clear format. Table 3 shows that 

the unsecured environment does not have any encryption or protection. It is therefore used as a baseline for comparing performance 

with the proposed solution later. 

6.1.2 Scenario 2 (ideal environment with an active attacker) 

This experiment is designed to measure the vulnerability of the client-router connection in the proposed system’s absence when an 

active attacker is present within the local network. In this case, the attacker monitors the data flow between the client and the router 

while using the browser, enabling the attacker to view all user data. This is facilitated by the execution of the following procedures: 

Step 1: Set up the environment by launching three virtual machines in a VMware Host-Only Network environment: First Computer 

(Client -Windows 10), second computer (the router -OpenWRT), and the third machine (Attacker with Kali Linux). 

Step 2: Open the Kali Linux system and launch the attack tools. Specifically, the MITM tools described in the subsequent steps are 

activated. 

Step 3: Launch ARP spoofing attack, whose goal is to corrupt the ARP table and divert client traffic to the attacker before sending 

it back to the router. 

Step 4: In order to view plaintext content, SSL strip is used to intercept HTTPS requests and convert them to HTTP. 

Step 5: Open Wireshark on the attacker’s network interface to monitor all packets passing to and from the client. Thereafter, 

determine whether the data is readable or not. 

Step 6: Submit a URL from the Google Chrome browser on the client device. This is accomplished by inputting the same search 

address as before, without the suggested system encryption enabled. 

Query Response  

Total time Size Time Size Time 

30 15.953573 81 16.009389 0.055816 

30 22.981972 81 22.982611 0.000639 

30 29.790260 81 29.790543 0.000283 

Average (0.055816 + 0.000639 + 0.000283)   ÷ 3 =  0.0189127 

http://www.iana.org/domains/example
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Step 7: Monitor the response. This involves tracking the data sent and received in Wireshark on the attacker's device, along with 

the packet content and clarity.  

Step 8: Record the time the request was sent from the client's device, the response received, and the size of this request. Table 4 

gives a depiction of the recorded data. 

Table IV: Data on the presence of the attacker 

 

 

 

 

 

 

 

Table 4 represents an ideal environment in which an attacker is active. In this case, attack tools such as ARP spoof and SSL strip 

were activated in the Host-Only network and the attacker was able to intercept the connection and redirect the packets from HTTPS 

to HTTP. The findings indicated that the attacker is able to access the data in its entirety, which was transmitted as plaintext without 

any encryption. The overall response time surpassed that of Table 3. This is because the attacker was situated within the connection, 

causing a slight delay that did not hinder the penetration. 

6.1.3 Scenario 3 (the proposed system environment) 

This simulation aims to test the proposed system’s safety and effectiveness when running in a normal operating environment (free 

of attackers), and evaluate its performance in the absence of threats. Here, it is necessary to isolate the system’s impact on user 

experience and performance without any external interference. This scenario is accomplished through the execution of the following 

procedures: 

Step 1: The environment is set, which comprises of the router (OpenWRT), the client device (Windows 10), and the Host-Only 

network in a VMware system. 

Step 2: Run the proposed system between the client and the router. During this process, keys are transferred using the Diffie-Hellman 

algorithm. After the successful key exchange, a shared key is created and stored for usage in encryption. 

Step 3: Apply the proposed system by inputting the search query: http://www.iana.org/domains/example in the custom browser 

created with PyQt5.   

Step 4: After being text formatted, encrypt the connection using AES-GCM and the generated random nonce.  

Step 5: Using JSON, capture the data and convert it into bytes. The data then travels to the router over UDP. 

Step 6: The packet arrives at the router through the socket. Next, it is decoded using the same nonce and shared key.  

Step 7: The response is encrypted the same way. Afterwards, it is forwarded to the client as the server response.  

Step 8: The client receives the encrypted packet from the server. Next, it decodes it and presents the response in the Google Chrome 

browser. 

Step 9: Using the internal system codes, the request time, response time, and full encryption time are logged. As shown in Table 5, 

Wireshark guarantees that the encrypted packets do not contain any readable data. 

 

 TABLE V: PACKET SIZE AND TIME IN THE PROPOSED SYSTEM ENVIRONMENT 

Table 5 presents the results in the proposed system’s environment, which is the full implementation scenario using AES-GCM 

encryption after Diffie-Hellman key exchange. The three rows indicate that all data was fully encrypted, with a separate encryption 

time for each operation. Encryption times were accurately measured, reaching 1.08 seconds in some cases. This demonstrates the 

significant performance burden occasioned by encryption. However, this encryption does not significantly impact the overall 

response time. As such, these results confirm the system’s success in protecting data even in an ideal environment without an 

attacker. 

Query Response  

Total time 
Size Time Size Time 

99 8.167677 108 8.231001 0.063324 

99 12.340556 108 12.382725 0.042169 

99 18.770788 108 18.813340 0.042552 

Average (0.063324 + 0.042169 + 0.042552) ÷ 3= 0.0493483 

Query Response  

Total time 

Total encryption 

time 
Size Time Size Time 

259 2.015768 194 2.0268909 0.0111229 0.0221325 

259 5.639932 194 5.682906 0.042974 0.042072 

259 7.881923 194 7.915380 0.033457 0.037074 

Average (0.0221325 + 0.037074 + 0.042072) ÷ 3 = 0.0337595 

http://www.iana.org/domains/example
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6.1.4 Scenario 4 (an active attacker and the suggested methodology) 

The execution of the encryption method on the same network amongst active attackers is the most critical situation. It serves as a 

practical assessment of the proposed system’s efficacy. Specifically, this test aims to assess the system’s ability to prevent data 

interception and analysis, even when advanced attack tools are utilized. The implementation procedures are as follows: 

Step 1: Perform environment configuration. This comprises of the running (within a host-only network in a VMware setting 

comprising three virtual machines) the client (Windows 10), the router (OpenWRT), and the attacker (Kali Linux). 

Step 2: Using the Diffie-Hellman protocol, generate the shared key between the client and the router. This is accomplished using a 

key exchange module. 

Step 3: Perform custom browser configuration. The goal of this step is to encrypt each query utilizing a random nonce prior to 

exposing it to UDP and AES-GCM. 

Step 4: Turn on Wireshark on the attacker to track all outgoing and incoming packets. Next, activate ARP spoof to poison the ARP 

table and intercept traffic. Thereafter, perform SSL strip whose goal is to convert HTTPS to HTTP. This enables the attackers to 

read the content of the exchanged messages. 

Step 5: From the client side, a query is launched using the system’s specialized browser to http://www.iana.org/domains/example, 

just as in the previous cases. In this setup, the encrypted link was contained in JSON. Therefore, the router decrypted the data and 

issued a re-encrypted answer. 

It was noted that Wireshark only displayed indecipherable binary data. The SSL strip could not decode the data. This is because the 

protection is implemented at the application level, and not merely at the TLS level. As shown in Table 6, every bit that the adversary 

could see was indecipherable ciphertext.  

Table VI: Size and time of the query and response 

 

 

The above results have illustrated the efficacy of the proposed solution in safeguarding communications within the local network 

from MITM stripping assaults. This has been facilitated by the analysis of four distinct operating scenarios described above. In the 

two unsecured setups, data was transferred in plaintext, either directly or after the attacker terminated HTTPS, rendering it 

susceptible to total eavesdropping. In contrast, the data exhibited a completely different behavior in the two operational cases: it was 

fully encrypted using AES-GCM, uninterpretable by surveillance tools, even with an active attacker. It was also observed that the 

system added an application-level security layer independent of HTTPS, preventing data leakage even when the TLS layer was 

compromised. Regarding performance, processing time increased from an average of 0.05 to 0.11 seconds, an acceptable difference 

in this operating environment. Regarding data volume, packet size increased significantly due to the inclusion of a nonce and 

encapsulation of the content in JSON, a normal cost of secure transmission. This highlights several advantages: physical protection 

against attacks, independent encryption, and easy integration with virtual infrastructures. The main setback is the limited increase 

in execution time and data volume. This calls for subsequent improvements in efficiency devoid of compromising safety. Figure 9 

and Figure 10 give detailed depiction of the obtained results. 

 

Query Response  

Total time 

Total encryption 

time 

Size Time Size Time 

259 36.614364 194 36.626963 0.062599 0.074800 

259 101.746798 194 101.813063 0.066265 0.075920 

259 117.864350 194 117.876073 0.011723 0.067720 

Average (0.074800 + 0.075920 + 0.067720) ÷ 3 = 0.072813 

http://www.iana.org/domains/example
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Figure 9: Total execution time comparison across all scenarios 

 
Figure 10: Query and response size comparison across all scenarios 

7. SECURITY ANALYSIS 

7.1 Formal Security Analysis 

The Shamir, van de Riet, and Orponen (SVO) logic is a formal logic for analyzing authentication and security protocols. In this 

work, SVO is used instead of BAN or GYN because it offers support for public key infrastructure. The main network entities in the 

proposed method include Client (C), Router (R) and DNS Server (S).  

7.1.1 Principals, beliefs and statements 

 M: Message or value 

 P, Q: Principals (such as C, R, S) 

 P |≡ M: Principal P believes (or is entitled to believe) M 

 P ∋ M: P possesses (or is capable of possessing) M 

 #(M): M is fresh (not used before in any other run) 

 P 
 𝐾
↔

 Q: P and Q may use the shared key K (good key) 

 P ⇒ M: P has jurisdiction over M (controls its validity). 

 P ⊲ M: P sees M (is sent M in a message) 

 P |~ M: P once said M 
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 PK(P, K): K is P’s public key.  

 {M}K: M is encrypted/decrypted with key K. 

 (X, Y): Concatenation of X and Y 

 X ⊂ Y: X is a sub term of Y (such as nonce inside a message). 

7.1.2 SVO Rules  

Rule 1: Message Meaning Rule (MMR) (Shared Key) 

If P believes K is shared with Q and sees {X}K, then P believes Q said X. Mathematically, this is expressed as follows: 

P |≡ (P ↔ Q: K), P ∋ {X}K  

P |≡ Q |~ X   

Rule 2: Freshness Propagation Rule (FPR) 

If part of a message is fresh, the entire message is considered fresh. Mathematically, this is written as follows: 

#(X), X ⊂ Y   

#(Y)   

Rule 3: Jurisdiction Rule (JR) 

If P trusts Q on X and Q believes X, then P believes X. This is mathematically expressed as shown below. 

P |≡ (Q ⇒ X), P |≡ Q |≡ X   

P |≡ X   

7.1.3 Assumptions  

7.1.3.1 Initial possessions  

C ∋ g, p (Client C possesses generator g and prime p) 

R ∋ g, p (Router R possesses generator g and prime p) 

      7.1.3.2 Freshness  

C |≡ #(a) (Client C believes a is fresh) 

R |≡ #(b) (Router R believes b is fresh) 

C |≡ R |≡ #(n) (Client C and Router R believe n is fresh) 

7.1.3 Computation Ability  

C ∋ A= g^a mod p 

R ∋ B= g^b mod p 

7.1.4 Protocol Steps  

1. C ⊲ A: Client sent A  

2. R ⊲ A: Router sees A  

3. R ⊲ B: Router sent B  

4. C ⊲ B: Router sees B  

5. C ∋ K= B^a mod p 

6. R ∋ K= A^b mod p  

7. C ∋ #(n), {URL}K,n: encryption URL 

8. {URL}K ⊂ DQ: encrypted URL is a sub term of DQ 

9. C ⊲ DQ: Client sent DQ  

10. R ⊲ DQ: Router sees DQ  

11. R ∋ #(n), {URL, QID}K,n : decryption URL 

12. R ⊲ DQ: Router sent DQ  

13. S ⊲ DQ: DNS Server sees DQ  

14. S ⊲ DR: DNS Server sent DR  

15. R ⊲ DR: Router sees DR  

16. R ∋ #(n), {DR, QID}K,n: encryption URL 

17. R ⊲ DR: Router sent DR  

18. C ⊲ DR: Client sees DR 

19. C ∋ #(n), {URL, QID}K,n: decryption URL 

20. C ⊲ HTTP req: Client sent HTTP request 

21. WS ⊲ HTTP req: Web Server sees HTTP request 
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22. WS ⊲ HTTP resp: Web Server sent HTTP response 

23. C ⊲ HTTP resp: Client sees HTTP response 

7.1.5 Derive Beliefs 

According to Steps 1-6, Rule 1, Rule 2 and the initial assumptions, the Client C and Router R share a secret key and some fresh 

key. This key is only used between C and R, that is: 

C 
 𝐾
↔

 R; C |≡ R |≡ #(K) 

Based on Steps 7-12 and Rule 3, the Router R beliefs that the encrypted URL came from the client C. In addition, both parties 

belief n is fresh value, that is:  

R |≡ (C ⇒ URL); C |≡ R |≡ #(n) 

According to Steps 12-15, secure messages exchanges can take place between DNS server and Router R.  

Based on Steps 16-19 and Rule 3, Client C beliefs that encrypted URL came from Router R as a response to the DNS query. 

Therefore, 

C |≡ (R ⇒ URL); R |≡ C |≡ #(n) 

According to Steps 20-23, secure message exchanges occur between web server and Client C.  

7.1.6 Summary  

 Both parties agree on the same session key. 

 The key is fresh, that is, (#(K)). 

 The key is known only to Client C and Router R (key secrecy). 

 The key is suitable for secure communication between Client C and Router R. 

 The symmetric encryption has fresh (#(n)) for each direction. 

7.2 Informal security analysis 

This section examines the proposed system’s security model that mitigates MITM stripping attacks. In addition, we evaluate its 

efficacy against diverse security threats. 

7.2.1 Security modeling 

The proposed system is dependent on three primary components, whose details are described below: 

 Victim: the user’s device that establishes connections through the browser. 

 Attacker: an intermediary that seeks to disrupt and convert connections from HTTPS to HTTP or alter keys during the 

exchange process. 

 Enhanced router: incorporates an intelligent analysis module to authenticate the key’s validity and avert stripping. 

The proposed system comprises of the following functions: 

 Key generation uses the Diffie-Hellman method, with the key briefly retained in a local file at both endpoints. 

 The client encrypts the message using AES-GCM and transmits it to the router through the designated port (1600). 

 The router decrypts messages utilizing the shared key while validating GCM integrity. 

 The system prevents unencrypted connections or those utilizing altered keys. 

The system employs a session-specific key that is generated singularly and automatically altered for each new connection attempt. 

Therefore, the proposed system prevents the reuse of keys or messages. 

7.2.2 Security Proofs 

The fundamental principle of the proposed system, which is primarily tailored for MITM stripping attacks prevention, is that for the 

router to produce a valid response decrypted and authenticated by the client, the message must be encrypted with the appropriate 

shared key and remain unchanged during transmission. 

Theorem 1: an attacker cannot produce a legitimate encryption response without the shared key. 

Proofs 1: In the proposed system, router decryption depends on the GCM tag aligning with the message data. Any alteration of the 

data or use of an alternative key leads to an instantaneous verification failure, eliminating the necessity for human examination. 

Theorem 2: a perpetrator cannot effectively retransmit identical messages (replay attack). 

Proofs 2: Each key exchange session generates a distinct key. Even if an encrypted communication is intercepted, an attacker cannot 

exploit it because of the unique shared key for each session, which is purged from memory upon connection termination. 

Theorem 3: an assailant cannot execute a stripping attack to transition the connection from HTTPS to HTTP. 
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Proofs 3: The proposed system only accepts encrypted requests with the shared key and valid GCM tag. Any effort to convert the 

connection to HTTP yields an unintelligible message that is promptly rejected by the router. 

Theorem 4: The developed system facilitates effective session-oriented key management. 

Proofs 4: In our scheme, each key is produced during a singular session and retained in a temporary file that is systematically 

eradicated upon session termination. This key is not permanently stored. Instead, it is restricted to the session’s lifetime. 

Theorem 5: The system preserves confidentiality and inhibits content revelation. 

Proof 5: In the proposed system, we employ AES-GCM with a shared key to ensure that adversaries are unable to access or alter 

the information devoid of the required key. During decryption, changing any byte results in GCM failure. 

Theorem 6: The system effectively mitigates impersonation and key alteration attacks. 

Proof 6: An attacker cannot alter messages or produce a key identical to the client without possessing the confidential parameters 

of the Diffie-Hellman algorithm (private keys). This is mathematically infeasible due to the difficulties of solving the DHP.  

8. CONCLUSIONS 

This study examined the risk of MITM Stripping attacks and developed an application-level protection mechanism that integrates 

authenticated encryption with secure key exchange. A virtual environment was created to replicate real-world attack scenarios. The 

results confirmed that the system prevents HTTPS downgrades, protects data confidentiality, and prevents attackers from reading or 

modifying communications, even when they are within the same local network. Both formal and informal analyses demonstrated 

the system's robustness.  

The proposed system benefits from three aspects: First, it creates an independent application-level security layer that continues to 

protect data even in the event of a breach. Furthermore, it seamlessly integrates into virtual testbeds and router-based infrastructures, 

facilitating experimentation across diverse contexts. The performance overhead regarding execution time and packet size was 

satisfactory, demonstrating the design's viability. This work may prove beneficial in situations where HTTPS security is inadequate 

or breached. The design illustrates that fundamental encryption aspects, when integrated with astute traffic management, can bolster 

the robustness of communication systems against active threats. The studies confirm that the method developed is effective against 

MITM stripping attacks, while also allowing for considerable avenues for improvement and research. Next steps for the work 

include: 

 Using lightweight encryption algorithms, such as Ascon or PRESENT, may lessen the computational costs related to the 

technique, allowing for wider deployment towards resource-constrained devices like IoT nodes. 

 Improving code error handling that will allow the index counter to be automatically rolled forward in case of a 

decryption/message verification failure to improve session stability and support session continuity. 

 Expand the model to investigate mobile environments and wireless technologies, where MITM attacks are on the rise due 

to the use of public Wi-Fi networks. 

 Investigate hybrid approaches, combining machine learning for on-the-fly detection of anomalous traffic patterns, along 

with adding an encryption-based security framework. 

 

9. LIMITATIONS 

The system has not been fully tested in a real-world environment. The application was conducted in a virtual environment that 

simulates reality but does not represent all real-world network conditions. Real networks vary in terms of router types, endpoint 

types, network configurations, and workloads. These factors may lead to unexpected problems during operational use. 

The system relies on key exchange and accurate nonce value generation at each stage of the communication. Any error in the 

messages or nonce calculation results in an immediate failure of the authentication process and failure of data transfer. This 

represents one of the current technical limitations of the system. 
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