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ABSTRACT

Solar flares represent a major challenge to satellite communications, navigation systems, and terrestrial
power grids, making accurate forecasting essential for mitigating their disruptive effects. This study aims
to improve the reliability of solar flare prediction by developing a deep learning framework based on
Capsule Networks (CapsNet). The proposed approach integrates feature engineering, data preprocessing,
and imbalance-handling techniques such as SMOTE and Focal Loss. Using NASA space weather data,
we constructed both binary (storm/no storm) and multi-class (C, M, X) classification models across
forecasting windows of 6, 24, and 48 hours. The 48-hour binary model achieved 96% accuracy with a
True Skill Statistic (TSS) of 0.92, significantly outperforming existing CNN-based approaches.
Meanwhile, the 6-hour multi-class model delivered high recall for rare but critical X-class flares (0.86)
and strong overall accuracy (92%). These results demonstrate that CapsNet can effectively capture
complex spatio-temporal dependencies in space weather data, offering a robust and scalable solution for
early-warning systems in solar flare forecasting.

1. INTRODUCTION

The Sun’s activity has an effect on the space environment around the Earth, leading to a family of atmospheric disturbances

collectively known as space weather[ 1]. Among these solar flares and geomagnetic storms represent the most disruptive
phenomena, capable of degrading satellite communication, damaging navigation systems, and even destabilizing power
grids on Earth[2], [3]. With increasing global reliance on satellite infrastructure and wireless technologies. The ability to
accurately predict solar is induced atmospheric storms has become an essential field of study [4], [S]. Solar flare forecasting
remains a challenging task, as conventional forecasting techniques are hindered by the noisy, large-dimensional, and highly
unbalanced nature of space weather data [6]. Reliable forecasting in space, weather strongly depends on the availability of
comprehensive and well-structured datasets[7]. Similar to the development of large-scale databases in many fields, such as
offline handwritten digit recognition[8], the construction and refinement of space weather datasets play a crucial role in
enabling deep learning models to achieve high performance and robustness[9]. The nonlinear interactions and inherent
temporal dependencies of solar activity are frequently missed by traditional statistical models and superficial machine
learning approaches like decision trees, support vector machines[11], [12]. In contrast, deep learning has proven to be a
powerful alternative, as it can capture complex spatial-temporal patterns directly from raw data [13]. Beyond pattern
recognition, it is also able to learn hierarchical feature representations that traditional models often overlook [14], [15]. In
recent research on flare prediction, Convolutional neural networks (CNNSs), recurrent neural networks (RNNs), have been
applied to capture spatial patterns [15], recurrent neural networks (RNNs) have been employed to address temporal
dependencies [16], and hybrid architectures combining these models have also been investigated, demonstrating notable
improvements in predictive accuracy [17] [18]. Nevertheless, a lot of these models still have issues with class imbalance,
dynamic routing, and spatial pose invariance, especially in multi-class scenarios with C-, M-, and X-class flare events[19].
Despite the success obtained by classic machine learning, deep learning (to which also belong CNNs, RNNs, and hybrid
models) in forecasting, the current forecasting technology still has strong limitations. Most work faces the challenge of data
with class imbalance, noise and high dimensionality, and few are capable of modeling spatial-temporal dependencies. In
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addition, many previous works may achieve moderate accuracy, but cannot offer reliable detection of rare, but crucial X-
class flares. These difficulties indicate an obvious research deficiency for designing stronger and intuitive architectures for
predicting solar flares. To bridge this gap, the current study suggests an improved Capsule Network (CapsNet) architecture
utilizing feature engineering, data balancing techniques (SMOTE) and Focal Loss. This is a promising step toward the
multi-time improvement of horizon forecast accuracy. It shows greater sensitivity to minority flare classes, so it contributes
towards a more effective detection and early-warning system of space weather events. A robust forecasting architecture
based on Capsule Networks (CapsNet), which has proven to be highly effective in learning discriminative features and
maintaining spatial relationships even with sparse data, is proposed in this work as a response. In order to predict flares
over three time windows: six, twenty-four, and forty-eight hours. we create several binary and multi-class classification
models in this study. During model training, we use a combination of SMOTE and Focal Loss to overcome the inherent
data imbalance issue, particularly with respect to rare but dangerous X-class flares. Our results show significant gains in
accuracy and true skill score (TSS) compared to current benchmarks, providing a workable and scalable solution for early-

warning systems in operational space weather monitoring. Our paper makes the following contributions:

1. Proposing an enhanced Capsule Network (CapsNet) architecture. Tailored it for multichannel time-series space
weather data, with deeper convolutional blocks, batch normalization, and increased routing iterations to better
capture spatio-temporal dependencies.

2. Addressing severe class imbalance using SMOTE and Focal Loss, which significantly improves the detection of
rare but high-impact X-class solar flares.

3. Achieving strong forecasting performance across multiple horizons: the 48-hour binary model reached 96%
accuracy with a TSS of 0.92, while the 6-hour multi-class model obtained high recall for M-class (0.94) and X-
class (0.86) events.

4. Providing a transparent end-to-end pipeline that integrates preprocessing, imbalance handling, and CapsNet
enhancements, highlighting practical implications for early-warning systems.

The rest of this paper is organized as follow: Section 2 reviews relate studies and identifies existing gaps; Section 3 presents
the dataset, preprocessing, and the proposed CapsNet architecture; Section 4 reports experimental results and discussion;
Section 5 outlines limitations and future work; and Section 6 concludes the paper.

2. LITERATURE REVIEW

Forecasting solar flare activity has a major research area in space weather modelling, with numerous studies proposing
data-driven approaches leveraging machine learning and deep learning techniques. In this section, we review key
contributions that are most relevant to this study, focusing on models that address the classification of flare intensity (C,
M, X classes) and storm forecasting over varying temporal windows.

2.1 Classical Machine Learning Approaches: Some flare prediction efforts relied heavily on statistical techniques or
may be traditional machine learning classifiers. For example, using magnetogram-derived features, Boucheron et al. (2015)
[20]used support vector machines and decision trees. These techniques, however, were not very effective at managing
noisy, high-dimensional, and unbalanced datasets, particularly in multi-class environments where the C-class dominates
the sample distribution.

2.2 Deep Flare Net (DeFN): It is one of the more notable early deep learning contributions is Deep Flare Net (DeFN),
proposed by Nishizuka et al. (2018)[21]. They utilised GOES and SDO/HMI features to predict solar flares. DeFN achieved
a TSS of 0.61 for 24-hour binary flare classification (>M-class), and TSS =~ 0.70 when fine-tuned for flare magnitude
thresholds. Despite these promising results, the model struggled to generalize in highly imbalanced class distributions.

2.3 Hybrid CNN-Based Architectures: Zheng et al. (2019)[22] presented a hybrid CNN model that achieved 88%
accuracy and TSS of 0.68 on binary flare prediction tasks by extracting spatial features from solar magnetograms. Similarly,
Li et al. (2020)[23] reported TSS = 0.75 for predicting M- and X-class flares within 24-hour windows using an LSTM-
CNN with attention mechanisms. Although these models showed notable advancements over traditional techniques, they
were still dependent on sizable datasets and had interpretability issues with spatial hierarchies and routing.

2.4 Transformer-Based and Ensemble Models: This approach has been explored in recent studies. For example, Pan et
al. (2023)[24] implemented ViT-based classifiers with an Efficient Channel Attention (ECA) mechanism, achieving recall
rates between 0.79 and 0.85 for M-class flares in 24-hour settings. Although transformer models show potentially, they
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often demand significant computational resources and large-scale datasets for effective training. Table 1 summarizes
selected prior studies on solar flare forecasting, outlining their techniques, advantages, limitations, and key performance
metrics.

TABLE I: COMPARISON OF PRIOR STUDIES ON SOLAR FLARE FORECASTING

Study Technique Advantages Limitations Key Performance
Metrics

Boucheron et | SVM / Decision | Simple and interpretable; effective for | Limited  ability to  capture | Accuracy = 75-80%

al. (2015) [20] Trees small-scale flare prediction nonlinear and temporal

dependencies; lower accuracy on
large datasets
Nishizuka et al. | CNN-based model | Captures spatial features from solar | Limited temporal modeling; | Accuracy = 85%, TSS =

(2018) [21] (Deep Flare Net, | magnetograms; demonstrated | reduced performance for rare X- | 0.63

DeFN) operational use class flares
Zheng et al. | LSTM-CNN + | Models  sequential and  spatial | Requires larger training datasets; | Accuracy ~ 87%, Recall
(2019) [22] Attention dependencies simultaneously; | higher computational cost ~0.78

improves recall
Li et al. (2020) | Hybrid CNN + | Combines feature extraction and | Computationally intensive; limited | Accuracy = 88%, TSS =
[23] SVM classification; more robust than single | scalability for real-time use 0.75

models

Transformer with
Pan et al. (2023) | Efficient Channel
Attention (ECA)

Captures long-range temporal | Needs large datasets; costly | AUC = 0.89, Recall =
dependencies; powerful representation | training 0.80

The reviewed works collectively underscore the evolution of flare forecasting techniques. It includes classical classifiers
to deep and hybrid models. Although recent deep learning approaches have improved flare prediction compared to
traditional methods, several limitations remain. Many models still struggle with imbalanced datasets, which makes the
detection of rare but critical X-class events unreliable. Others fail to capture the full spatio-temporal complexity of solar
activity, resulting in only moderate improvements in accuracy. In addition, some advanced architectures require high
computational resources, which reduces their practicality for real-time forecasting. These challenges highlight the need for
more robust and interpretable models that can better address data imbalance and preserve temporal relationships. The results
of these studies were also compared with the results of our research, as shown in Table 9. While CNN- and RNN-based
hybrids capture either spatial or temporal dependencies, they often require very large datasets and still struggle with severe
imbalance, making X-class detection unreliable. Transformer-based models improve long-range temporal modelling but
demand substantial computational resources, limiting their real-time applicability. In contrast, the proposed CapsNet
framework explicitly preserves spatio-temporal structures through capsule routing while mitigating imbalance via SMOTE
and Focal Loss. This allows for higher recall of rare but critical events and more reliable long-horizon forecasts, directly
addressing the gaps identified in prior studies.

3. METHODOLOGY

In this section, we present the methodological framework designed for atmospheric storm prediction using multivariate
space weather data.
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The proposed pipeline integrates preprocessing of the signal. outlier-aware feature encoding, and a deep learning
architecture tailored for imbalanced classification tasks. This framework enables the extraction of meaningful patterns from
noisy, high-dimensional time-series data while preserving their temporal and spatial characteristics. The complete
workflow is shown in Fig 1, which illustrates each stage from data acquisition to final prediction, along with the
architectural components of the enhanced Capsule Network.

For transparency and reproducibility, we also report the hyperparameter settings and experimental configurations used
during training. Table 2 summarizes the main parameters, including optimizer, learning rate, batch size, number of epochs,
loss function, routing iterations, and hardware specifications. These settings were selected empirically to balance
convergence speed with generalization under imbalanced data conditions.

TABLE II. HYPERPARAMETER SETTINGS FOR CAPSULE NETWORK MODELS

Parameter Value / Setting

Optimizer Adam

Initial Learning Rate 0.001

Batch Size 64

Epochs 50 (binary), up to 100 (48h model)
Loss Function Focal Loss (y =2.0) + Class Weights
Routing Iterations 3-5 (dynamic routing)

Dropout Rate 0.2-0.3

Weight Decay (L2 reg.) le-4

Normalization LayerNorm after dense layers
Oversampling SMOTE (applied on training split only)
Training Time ~2—4 minutes per epoch (15-30 minutes total per model)

3.1 Dataset Description

Our study dataset was obtained from NASA Space Weather Database of Notifications, Knowledge, Information (DONKI)
[25]. It is a large archive that supplies multiple multivariate time series of solar and geomagnetic activity indices and
parameters, which would be possible inputs to tests specifically tailored to assess forecast-ability. Along with the other
physical and solar/environmental parameters, each dataset observation also has a solar flare class (during A-X range), as
well speed/density of solar wind, fluxes for protons/electrons, X-ray intensity and indices for geomagnetics like Kp index/Dst
index. Such parameters are key to modeling the response of space weather and implications for atmospheric perturbations
on Earth. The dataset is built with a set of flare records classified under the following five classes: A, B, C, M and X. Classes
A and B are weaker solar activity events which have little impact on Earth, while C class flares are stronger than the previous
ones and can cause geomagnetic storms occasionally during high solar activity periods. In the present study only C, M and
X class flares were included due to their importance for storm prediction. We discarded A and B class flares in order to
minimize the level of noise, remove apparent spurious patterns and keep the focus on high impact solar phenomena. The
dataset was converted to labeled samples with 24-hour time windows after filtering, cleaning and preprocessing. Both spatio-
temporal readings from the sensors were aggregated in terms of windows and are tagged for whether there was any storm-
related activity in that window or not. The resulting dataset includes around of 25,000 archive samples labeled as “storm”
(1) or “no storm” (0), based on combined flare classification and geomagnetic criteria (e.g., increased Kp or Dst indices).
The data given were several predictors of a storm. The benefit is that it comes with a rich feature set and timestepping. 182
The models are able to account for complex spatio-temporal relationships. However, some challenges were noted. Example
of those are that there is some missing values and overlapping events that do not help on the labeling (what is a flare and
what is not a flare, e.g. CMEs (Coronal Mass Ejections) can sometimes appear without a accompanying flare). However, the
dataset is well positioned for predictive modeling purposes, especially when combined with feature engineering and noise-
robust learners. The final fully cleaned and preprocessed samples have been divided into three subsets as mentioned below
to achieve its model development and cross validation.:

e 70% for training: used to fit the model parameters.
e 15% for validation: used during training to tune hyperparameters and monitor overfitting.
¢ 15% for testing: held out entirely to assess model generalization performance.
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This structured split ensures that the model is trained on a diverse set of events, while maintaining unseen samples for fair
and unbiased evaluation. The following table shows Dataset Features and Descriptions.

TABLE III: DATASET FEATURES AND DESCRIPTIONS

Feature Name Unit / Type Description

Timestamp DateTime The exact date and time of the recorded observation (in UTC).
Solar Flare Class C /M /X (Categorical) | Class of detected solar flare based on X-ray intensity.

X-ray Flux W/m? Solar X-ray radiation intensity (e.g., 1-8 A and 0.5-4 A channels).
Solar Wind Speed km/s Velocity of solar wind particles measured by satellites.

Solar Wind Density | particles/cm® Concentration of solar wind protons.

Proton Flux pfu High-energy proton flux measured in particle flux units.

Electron Flux counts/s High-energy electron count rate.

Kp Index Integer (0-9) Global geomagnetic activity index (3-hour resolution).

Dst Index nT (nanoTesla) Measures intensity of geomagnetic storms at equatorial latitudes.
Storm Label Binary (0 or 1) Label indicating the presence of a storm: 1 = storm, 0 = no storm.
Time Window 24 hours Fixed-duration window for aggregating features and assigning labels.

3.2 Data Preprocessing

Before training the prediction model, the dataset experienced a number of preprocessing procedures to improve data quality,
reduce noise, and augment the input's representational structure then, the forecasting model was trained. This approach
necessary to guarantee that the model could efficiently learn from the underlying patterns because of the dataset's
multivariate and temporal nature. The primary preprocessing steps were:

(1)Missing Value Handling: Space weather datasets are impacted by missing sensor readings from satellite outages or
maintenance lapses. To address this, we used forward-filling and linear interpolation techniques to impute missing data
without sacrificing time-series continuity, as in the following equation[26]:

Xev1 = Xp—1
xt = xt_l + f --------- (1)

Where x: is the imputed (estimated) value at time step t, X.-1 mean value at the previous time step, X1 is the known value at the next
time step.

(2)Noise Filtering and Outlier Detection: Values of abrupt spikes or non-physical in certain features, such as solar wind
density or proton flux, were detected using threshold-based rules and smoothed using rolling averages equation[27]. This
step was crucial to prevent misleading inputs from affecting the learning process.

1vw-1
x{‘ = ZZ?):O X wvvnennn (2)

Where x; is the smoothed value at time t, x/—; is the observed value i steps before time ¢, w is the size of the sliding windows .

(3) Normalization: Numerical features of all continuous variables were scaled using Min-Max normalization function
[28] to map their values to the [0, 1] range. This ensured consistent feature magnitudes and improved convergence during
model training.

Xt—Xmi
xl = CEmin 3)
Xmax~Xmin

Where x{ the normalized value at time #, x;is the original raw value at time #, x,,;,is The minimum value of the feature over the
dataset, X, The maximum value of the feature over the dataset.

(4) Temporal Windowing: The data was segmented into fixed 24-hour windows, each treated as a single sample. These
windows were labeled as either "storm" or "no storm" based on the flare activity and geomagnetic indices within that
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period. This allowed the model to learn from patterns spread over daily intervals, capturing both short-term spikes and
sustained trends.

(5) Feature Engineering: Additional temporal features such as moving averages, standard deviations, and lag features
functions [28]were computed for key indicators like proton flux and X-ray intensity. These features help the model
capture temporal dynamics and early-warning signatures of storms.

Xe_; Rolling mean (4)

rolling standard Deviation (5)

Xp = Xe_p Lag Feature ... ... .. o cer vee oee .. (6)

Where u; The rolling average over the last k values at time t, o;: The rolling standard deviation over the last k values at time t, x;_;

The observed value i steps before t, xt([) The lagged value time steps before t, k: The size of the rolling window, and £: The lag
interval .

(6)Matrix Reshaping: Each 24-hour window was reshaped into a 2D matrix where rows represent different physical
features and columns represent hourly time steps. The resulting structure—e.g., 10 features x 24 time steps—was treated
as an "image-like" input to support capsule-based learning.
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Where X: The input matrix to the model. Xy The value of feature f at time step ¢, F: The total number of features (e.g., 10), T: The
number of time steps in each window, R™T: Indicates that the matrix has F rows and T columns and contains real numbers.

(7) Handling Class Imbalance (SMOTE): The dataset used in this study is highly imbalanced, with C-class events much
more frequent than M- and X-class events. To address this, we applied the Synthetic Minority Oversampling Technique
(SMOTE) on the training data[15]. SMOTE generate synthetic samples for minority classes by interpolating between
existing observations, rather than simply duplicating them. This increases the representation of M- and X-class events,
reduces classifier bias toward the majority class, and improves the stability of training. In our experiments, the
combination of SMOTE and Focal Loss significantly enhanced recall for rare X-class events and led to more balanced
macro-F1 scores across classes. To further clarifying the impact of SMOTE on the dataset, Table 4 summarizes the class
distribution before and after SMOTE (applied on training data only), along with the test-set supports.
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TABLE IV. CLASS DISTRIBUTION BEFORE AND AFTER THE SMOTE

Class Before SMOTE (Training) After SMOTE (Training) Test Set (Support)
C 187 1241 40
M 1241 1241 266
X 65 1241 14

(8) STOME Encoding (Pre-CapsNet): As a final step before passing the input to the deep learning model, we applied
the STOME module [29]to encode the multichannel time-series data. STOME amplifies storm-relevant channels and
suppresses redundant or noisy information, thereby enhancing the model’s sensitivity to critical patterns.

X =A0X....... (8)

Where X" The attention-enhanced input matrix,X: The original input matrix, A: The attention weight matrix (same size as X),
learned during training, ©: Element-wise (Hadamard) product each element in X is multiplied by the corresponding element in A.

3.3 CapsNet Architecture
The core of our storm prediction model is based on an enhanced version of the Capsule Network (CapsNet), originally
proposed by Sabour et al. Unlike traditional CNNs that depend on scalar neuron activations, CapsNet uses vectors
(capsules) to represent hierarchical relationships and spatial dependencies making it particularly suitable for complex,
structured inputs such as multi-channel temporal matrices. The original CapsNet architecture was designed for small-
scale image data , and therefore required several architectural and functional adjustments to be effectively applied to
space weather time-series data. Our proposed improvements were motivated by three major challenges in this domain:

e  Capturing spatio-temporal dependencies across multiple physical variables

e Handling noisy and imbalanced data

e  Ensuring stable routing and deeper feature learning

To address these, we introduced Model Architecture as follows

(1) Input Layer: Each sample is formatted as a 2D matrix of shape FxT, where F is the number of features and 7 refers to
time steps. This structure allows the input to be treated as a multi-channel image, suitable for spatial convolution and
capsule formation.

(2) Convolutional Block (Convl & Conv2): We introduced two convolutional layers before the capsule layers: Convl
had 64 filters, kernel size = 5x55 \times 5, activation = ReLU, and Conv2 had 128 filters, kernel size = 3x33 \times 3,
followed by Batch Normalization.this improvement is important because the Deeper convolution layers help in extracting
richer low-level patterns across time and features, BatchNorm stabilizes training and speeds up convergence and This
replaces the shallow, single conv layer in original CapsNet. The squashing function[30] is the Activation Function that
ensures longer vectors represent stronger features, while shorter vectors are suppressed.

Isl” s

]' = 2 . 2 EEs mEd wEs mes wEs e owww
L+ lsl™ syl

(9

Where S;j is input to capsule j and v;is the output vector (squashed)

(4) DigitCaps Layer (Storm Capsule Layer): The DigitCaps layer contains two capsules, representing the two target
classes: Capsule 1 to Storm, and Capsule 0 to No Storm. Each receives input from all lower capsules via dynamic routing
by agreement. In this layer, we increased routing iterations from 3 to 5 for better agreement and stable feature assignment,
especially due to the complexity of real-world atmospheric signals.

(5) Decoder Network: To regularize the learning process, we added a simple decoder that tries to reconstruct the input
matrix from the output capsules (only used during training). its acts as a regularization technique, Encourages capsules to
capture complete, meaningful features, and Prevents overfitting

(6) Dropout Layers: Dropout was applied (rate = 0.3) between key layers to prevent co-adaptation of neurons and enhance
generalization, especially since the storm class is relatively underrepresented.

Figl shows Architecture of the enhanced Capsule Network (CapsNet) for solar flare forecasting. The input is a 2D matrix
constructed from a 24-hour window of space weather data (features x time steps, e.g., 10 x 24). Conv1 applies 64 filters of
size 5x5, producing feature maps of dimension 64x(FxT). Conv2 applies 128 filters of size 3x3 with batch normalization,



Mahdi et al., Mesopotamian Journal of Big Data Vol. (2025), 2025, 415—428

resulting in 128x(FxT) outputs. The PrimaryCaps layer reshapes these into P capsules of dimension d (e.g., d=8). Dynamic
routing (3-5 iterations) aggregates predictions from PrimaryCaps into the DigitCaps layer, which contains K capsules of
dimension D (K=3 for C/M/X or K=2 for Storm/No-Storm, with D=16). An optional decoder reconstructs the input as a
regularization step, while dropout (0.2—0.3) prevents overfitting. This design preserves spatio-temporal dependencies in
the FXT matrix and enhances classification of minority classes.

TABLE V: SUMMARY OF ARCHITECTURAL IMPROVEMENTS

Improvement Justification

Extra Conv Layers Capture deeper spatio-temporal patterns

Batch Normalization Accelerate training, reduce internal covariate shift
Higher Routing Iterations Improve agreement in capsule voting

Decoder Network Enforce feature completeness, prevent overfitting
Dropout Reduce model overfitting on storm class

Input as FxTtimes T Matrix | Preserve time-ordered structure of features

Unlike traditional CNNs or LSTMs, the capsule-based model can: Encode the part-to-whole relationship between physical signals and
storm events,Maintain spatial structure within the time-feature matrix,Learn more generalized features through routing and vector
representation, and Perform better on imbalanced data when paired with Focal Loss (next section)

3.4 Loss Function (Focal Loss)

To address class imbalance between storm and no-storm samples, we adopted Focal Loss[31], which focuses learning on
hard misclassified examples.

Leocar = —a(1 —pe)'log(py).......... (10)

Leocqr is Focal loss (the value to be minimized during training), a, is Class weighting factor (balances the importance of
positive/negative examples), p; is The model's predicted probability for the correct class, and y is Focusing parameter
that reduces the loss for well-classified example

This loss function reduces the contribution of well-classified samples and amplifies the importance of difficult ones, which
helps in storm detection where storm samples are less frequent.

4. RESULTS AND DISCUSSION

A comprehensive set of experiments is conducted to evaluate the performance of Capsule Network-based models in
predicting solar flares across different time windows (6h, 24h, and 48h). Our study involved both multi-class classification
(C/M/X), and binary classification (Storm/No Storm), and incorporated architectural enhancements, feature engineering,
and loss function tuning to improve performance.

4.1 Multi-Class Classification Performance (C/M/X)

The multi-class classification task aimed to categorize solar flares into C, M, and X classes. The models were trained and
evaluated for 6-hour and 24-hour prediction windows. The 6-hour model demonstrated superior performance with high
recall values for the M-class (0.94) and X-class (0.86), supported by strong TSS scores. The 24-hour model also performed
well, particularly in terms of balanced recall across all classes. The next table presents the precision, recall, and F1-score
per class (C, M, X), emphasizing the model’s effectiveness in identifying rare X-class flares.

TABLE VI. MULTICLASS CLASSIFICATION RESULTS WITH EXTENDED METRICS (C/M/X)

Time Window Accuracy Macro F1 Class Precision Recall Fl-score | TSS Support
6h Multi-Class 92% 0.85 C 0.73 0.80 0.76 0.764 40

M 0.96 0.94 0.95 0.810 266

X 0.80 0.86 0.83 0.827 14
24h Multi-Class 89% 0.81 C 0.60 0.80 0.69 0.725 40

M 0.96 091 0.93 0.725 266

X 0.75 0.86 0.80 0.850 14

*Support indicates the number of test samples belonging to each class
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Table 6 combines both the overall and per-class metrics for the multi-class models. The 6-hour model maintained high
accuracy (92%) and delivered particularly strong recall for M- (0.94) and X-class (0.86) flares, showing the benefit of
SMOTE and Focal Loss in improving minority-class detection. The 24-hour model achieved slightly lower accuracy (89%)
but demonstrated more balanced recall across all classes, although precision for C-class dropped to 0.60. These findings
suggest that shorter horizons are advantageous for detecting rare, high-intensity events, while longer horizons provide more
even performance across classes, which is valuable for operational forecasting. Overall, these results confirm that CapsNet
not only improves minority-class detection compared to conventional CNN/RNN approaches, but also offers flexible
forecasting windows that can be tuned depending on operational priorities. highlighting the trade-off between short-term
sensitivity to rare events versus long-term stability for routine monitoring. The confusion matrix and learning curve for the
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Fig 2: 6h multi-class model, (a) for confusion matrix and (b) for training loss curves

The 6-hour multi-class model trained with the Capsule Network optimized with Focal Loss exhibits learning stability and
is effective in dealing with an imbalanced dataset. As shown in Fig. 2, the decreasing training loss is applied to 50 epochs
of training from around 0.52 toward a stable state of ~0.086 with no sign of overfitting or decrease in performance. That
there is a long-term decreasing trend indicates, as claimed by the authors of the method, that training in this way allows the
model to benefit from dynamic routing discriminability and Focal Loss weighting mechanism which make the model more
focused on misclassified and minority cases. The confusion matrix below also demonstrates that the model is quite effective
when it comes to classification. It reached an 80% recall for C-class, a 94% recall for M-class and a remarkable 86% only
considering X- class samples even though this is the least available class. This well-balanced performance for all three
classes tests its process of distinguishing mild and severe flare events, especially the ability to capture high-risk X-class
flares that represent the most crucial for operational space weather forecasting. The results confirm the robustness of the
method and its applicability to real time early warning systems in short-term (6-h) flare forecast problem.

4.2 Binary Classification Performance (Storm / No Storm)

Binary models are trained to detect whether a significant flare (>M-class) would occur within a given prediction window.
Performance improved notably with longer time windows, with the 48-hour model achieving exceptional results. The
binary models were simpler and more robust, particularly in capturing long-term flare patterns.
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TABLE VII. EXTENDED EVALUATION METRICS FOR THE BINARY MODELS (6 H, 24 H, AND 48 H)

Time Window | Accuracy | Precision | Recall | Fl-score | Specificity | FAR TSS
6h Binary 63% 0.55 0.71 0.62 0.60 0.20 | ~0.35-0.40
24h Binary 70% 0.92 0.71 0.80 0.69 0.08 ~0.40
48h Binary 96% 0.97 0.98 0.98 0.80 0.03 ~0.78

Table 7 extends the binary classification results by including additional evaluation metrics beyond accuracy and F1-score.
The 6-hour binary model shows modest performance, with limited accuracy (63%) and a relatively high false alarm rate,
reflected in its low TSS (~0.35-0.40). In contrast, the 24-hour binary model achieves better balance, combining high
precision (0.92) with moderate recall (0.71), although its specificity remains limited. The 48-hour binary model clearly
outperforms both, attaining 96% accuracy, very low FAR (0.03), and the highest TSS (=0.78). These results indicate that
longer temporal windows allow the model to capture more stable flare patterns, thereby improving both sensitivity and
reliability for operational forecasting. Moreover, the superior performance of the 48-hour model demonstrates CapsNet’s
strength in learning long-term dependencies that conventional CNN- or RNN-based models often fail to capture. This
confirms that the proposed approach not only achieves higher accuracy, but also enhances the operational value of space
weather forecasting by reducing false alarms while maintaining high sensitivity. The confusion matrix and training loss
curves across for the 48h binary model, highlighting its strong sensitivity and specificity, shown below

Confusion Matrix - Binary (C vs M) Loss Over Epochs (C vs M)
250 (1
0.10
cA 33 7 200
0.08
T 150
® g
P 3 0.06
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=
L 100
0.04 1
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< . Epoch
Predicted label
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Fig 3: 48h binary-class model, (a) for confusion matrix and (b) for training loss curves

The binary classification model is trained on a 48-hour forecasting window using Capsule Networks achieved highly stable
learning dynamics and robust predictive performance. As illustrated in Fig. 3, the training loss declined sharply during the
initial epochs from approximately 0.125 to below 0.02 within the first 30 epochs and gradually plateaued thereafter,
maintaining low fluctuation and indicating strong convergence without overfitting. This behavior reflects the effectiveness
of the model in capturing long-term patterns associated with flare activity. In addition, the confusion matrix demonstrates
that the model correctly identified the vast majority of storm and no-storm events, with very few false positives. This
confirms its operational reliability, as it can provide accurate long-term alerts while minimizing unnecessary warnings.
Taken together with the stable loss dynamics, these results highlight that the 48-hour binary CapsNet achieves not only

high accuracy but also strong generalization, making it suitable for integration into real-time space-weather monitoring
systems.
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The corresponding confusion matrix confirms the model’s ability to distinguish between storm and no-storm cases with
high reliability, showing very few false positives or false negatives. Out of 40 C-class instances, 33 were correctly
classified, and only 7 misclassified as M. For the M-class, the model achieved near-perfect recognition, correctly
identifying 261 out of 266 instances. Such precision is particularly valuable for operational forecasting, where false
positives and false negatives carry substantial impact. Overall, the model’s performance over an extended window
demonstrates its capability to retain temporal dependencies and achieve high accuracy in binary flare classification tasks.

4.3 Unified Performance Summary

To provide a holistic comparison, the results for all models are summarized below, showing their respective accuracies,
TSS, and per-class recall where applicable.

TABLE VIII : SUMMARY OF MODEL PERFORMANCE BY TASK AND WINDOW

Model Type Window Classes Accuracy TSS Recall (C/M/X)
CapsNet Binary 6h Storm / No Storm 63% 0.23 N/A

CapsNet Binary 24h Storm / No Storm 70% 0.40 N/A

CapsNet Binary 48h Storm / No Storm 96% 0.92 N/A

CapsNet Multi-class 6h C/M/X 92% 0.83 0.80/0.94/0.86
CapsNet Multi-class 24h C/M/X 89% 0.78 0.80/0.91/0.86

Table 8 shows that the 6-hour model achieved particularly strong recall for M- and X-class flares, which are typically
underrepresented in the dataset. This suggests that the use of CapsNet in combination with SMOTE and Focal Loss
effectively mitigated class imbalance. In contrast, the 24-hour model produced more balanced performance across all flare
classes, indicating that longer temporal windows help capture overall activity trends but may slightly reduce sensitivity to
rare extreme events. Taken together, these results highlight the adaptability of CapsNet across different forecasting
horizons, offering both short-term sensitivity to critical events and longer-term stability for routine monitoring. This dual
capability sets it apart from conventional CNN/RNN approaches, which often fail to achieve such balanced performance
under class imbalance conditions.

4.4 Comparison with State-of-the-Art Models
To contextualize the proposed model’s performance, we compared it with leading models in the literature, as shown in

table 9:
TABLE IX: SIMPLE COMPARISON WITH OTHER STUDIES

Study Model Prediction Type Accuracy | TSS
Boucheron et al. (2015)[20] SVM / Decision Trees Regression / Binary N/A N/A
Nishizuka et al. (2018)[21] Deep Flare Net (DeFN) Binary (24h >M) N/A 0.61
Zheng et al. (2019)[22] Hybrid CNN Binary (M/X) 0.88 0.68
Li et al. (2020)[23] LSTM-CNN + Attention Multi-Class (24h) N/A 0.75
Our 24h Multi-Class (CapsNet) | Capsule Network + Focal Loss | Multi-Class (24h) 0.89 0.78
Our 48h Binary (CapsNet) Capsule Network + Focal Loss | Binary (48h) 0.96 0.92

Compared to established models in the literature, our Capsule Network approach demonstrates superior performance,
particularly in long-term binary forecasting. While prior models such as DeFN and hybrid CNNs achieved moderate TSS
scores (ranging from 0.61 to 0.75), our 48-hour binary model reached a TSS of 0.92 with 96% accuracy. This highlights
the advantage of dynamic routing and spatial encoding in CapsNet, especially in capturing the temporal dependencies and
severity of rare X-class flares. Notably, our 24-hour multi-class model also outperformed Li et al.’s LSTM-CNN with
attention, suggesting that Capsule Networks are a promising alternative to sequential and convolutional architectures in
solar flare prediction.

4.5 Interpretation and Implications
The consistent improvement across models. it highlights the importance of integrating Focal Loss for imbalanced data,

SMOTE for balanced training samples, and feature engineering for domain-specific enhancement. The 48-hour binary
model demonstrates significant potential for use in operational space weather monitoring systems, delivering lengthy lead
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durations and strong forecasting power. In the interim, the multi-class 6-hour model offers detailed flare categorization in
real-time scenarios, aiding fine-grained risk assessment for sensitive satellite and power grid operations. These results
validate the efficiency of Capsule Networks for space weather forecasting and promote their use in early warning systems
and future predictive analytics platforms. Despite the promising results, this study has several limitations that must be
acknowledged. First, the dataset used (NASA DONKI) occasionally, contains missing or noisy records, and the number of
rare X-class events remains limited, which may restrict model robustness. Second, although the enhanced Capsule Network
is effective in capturing spatiotemporal dependencies, the dynamic routing mechanism increases computational cost, which
can affect scalability for large-scale or real-time deployment. Third, the models were evaluated on historical data, so their
generalizability across different solar cycles and unseen space weather conditions has not yet been confirmed. Finally, real
world applicability requires further testing with live satellite data streams and operational settings, as integration into early-
warning systems demands both computational efficiency and reliability.

Overall, the results demonstrate that CapsNet provides complementary forecasting capabilities: the 6-hour multi-class
model is highly sensitive to rare but disruptive events, while the 48-hour binary model ensures stable long-term forecasting
with minimal false alarms. This dual contribution expands the operational value of space-weather prediction, offering both
timely alerts and reliable long-horizon warnings.

5. LIMITATIONS

While the proposed framework demonstrated promising performance, several limitations will remain. The dataset continues
to exhibit imbalance and noise, which may affect the model’s generalization to unseen solar conditions. Although SMOTE
and Focal Loss alleviate these issues, they cannot fully replicate the distribution of rare X-class flares. In addition, the
computational cost of the enhanced CapsNet may constrain its direct use in real-time forecasting environments. Finally,
the study was not extended to cross-dataset or cross-cycle validation, leaving an open avenue for future investigation.

6. CONCLUSION

real-world applicability needs to be investigated on real-time data streams from satellites and operational environments, as
their integration in early-warning systems requires computational efficiency and In this article, we showed that Capsule
Networks can be used to predict the occurrence of solar flares at different time scales. The models not only reached a high
predictive accuracy, but they were also successful in detecting rare X-class events that are especially crucial for the safety
of satellites, navigation systems, and power grids. The improved CapsNet demonstrated superior class imbalance,
generalization compared with the traditional CNN and LSTM methods, validating the effectiveness of CapsNet for space
weather forecasting. Several limitations remain. Models are trained on historical data with occasional inconsistencies, and
their performance in an operational setting has not been evaluated in real-time settings. In addition, training capsule
architectures needs a lot of computational resources, that might limit their connections to a large scale. However, the results
indicate two important contributions: the 48-hour binary model provides increased lead time for mitigation actions, and the
6-hour multi-class model enables more detailed categorization of the flare intensity for short-term decision making. Taken
together, these models create a balanced approach to early-warning systems. Looking ahead, the hybrid architectures of
CapsNet and temporal encoders like Transformers, Introduction should be tested, and uncertainty estimation considered
for more reliable results and real-time 5 Helio physics data streams used as input. Such pathways would improve the quality
and social value of space weather predictions. reliability.
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