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ABSTRACT 

Data-driven decision-making, real-time connectivity, and automation have transformed industrial 
operations with the Industrial Internet of Things. However, the integration also introduces substantial 
cybersecurity vulnerabilities, making IIoT networks a prime target for malicious activities. Cyber threats 
are evolving and becoming more sophisticated, which makes traditional security mechanisms 
inadequate. An approach using deep learning to detect malicious activities in IIoT environments is 
examined. It is investigated whether Deep Feed Forward neural networks, autoencoders, and 
convolutional neural networks are effective at detecting anomalies and mitigating cyber threats. NSL-
KDD and UNSW-NB15 benchmark datasets are used to evaluate the proposed model's accuracy, 
precision, and detection rates. In addition to strengthening IIoT security, deep learning techniques can 

also ensure the resilience of industrial infrastructure.  

1. INTRODUCTION 

With the Industrial Internet of Things (IIoT), modern industries are becoming more connected, automated, and efficient [1]. 
As it interconnected ecosystem becomes increasingly vulnerable to malicious activities and cyberattacks, it also poses 
significant cybersecurity challenges. The dynamic and complex threat landscape of the IIoT environment often makes 
traditional security measures inadequate. To identify and mitigate malicious activities, deep learning has emerged as a 
powerful tool. Using advanced neural networks, deep learning approaches offer innovative solutions for detecting anomalies, 
predicting threats, and strengthening IIoT security frameworks. A deep learning approach is used to enhance cybersecurity 
resilience and ensure the sustainability of IIoT networks. As a result of IoT implementation, a new generation of 
communication and information technology has emerged. These technologies have been used in a number of vital industries 
to provide cost-effective, automated, sustainable, and smart solutions [2], [3]. Industry Internet of Things (IIoT) is the result 
of the extensive integration of IoT into the industrial and manufacturing domains. Several industrial and manufacturing 
sectors have implemented the Internet of Things, leading to the Industrial Internet of Things (IIoT). Medical devices, 
robotics, and software-defined manufacturing are also part of the IIoT in addition to industrial applications [4], [5]. The IIoT 
provides better quality of service and QoE for consumers, as a result of the IIoT. With sensors, smart actuators, and remote 
control, it's easier to monitor, manage, and control physical infrastructure in agriculture, healthcare, manufacturing, and 
transportation [6]. Industry 4.0 enables industrial devices to make real-time decisions using big data and analytics by 

transforming cyber-physical systems and production processes [7]. 

With NIDS, industrial IoT networks can be protected against cyberattacks and made secure and private [8]. A NIDS analyses 

network traffic for suspicious behaviour, and if it detects any, an alarm is raised. By comparing cyberattack signatures with 

incoming traffic patterns, typical intrusion detection systems can detect cyberattacks. Detection of traffic patterns depends 

on whether they match an attack signature. It kind of IDS is very effective at detecting known cyberattacks. Artificial 
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intelligence (AI) has attracted an enormous amount of interest from academia and industry because of its ability to perform 

tasks more efficiently and intelligently than traditional methods, as well as the fact that it can detect cyberattacks previously 

undetected by IDSs [9]. As part of the cybersecurity field, deep learning techniques have been applied to identify and mitigate 

a number of cyberattacks [10], providing impressive detection results [11]. With IIoT devices potentially tracking user 

behaviour through hardware and software, it is crucial to design policies and technical solutions that protect privacy, safety, 

and freedom. Every day, millions of devices connect to the Internet, opening up the possibility of multifaceted cyberattacks. 

It is common for IIoT devices to be hacked, accessed without authorization, and have their data stolen. Cybersecurity risks 

are associated with devices and networks connected to the Internet of Things [12]. Mitigating these challenges is a research 
priority. Devices and networks connected to the internet of things are often targeted by attacks, including distributed denial-

of-service (DDoS) attacks, keylogging attacks, and data theft. Most attacks on IIoT devices and networks are believed to be 

caused by botnets[13]. Each device in a botnet runs one or more bots and is connected to the Internet. A botnet's 

computational power increases as more IIoT devices are infected, making it more powerful to carry out larger attacks [14]. 

2. RELATED WORK  

IDS-based deep learning algorithms are proposed by the author [14]. Using deep belief networks, an IDS has been 

developed. We used disjoint datasets to train and validate the proposed method. In the second model, the chosen DL 

algorithm is trained on unlabeled data sets, and network traffic is analyzed over time. Additionally, an IDS based on deep 

learning was proposed for the IIoT [15]. With a deep feed-forward neural network and a deep autoencoder, it can learn 
malicious traffic characteristics. Modelling was done based on TCP/IP packet data. Datasets from NSL-KDD and UNSW-

NB15 were useful for detecting cyberattacks on industrial IoT systems[16]. In several papers  [17], sparse and noisy deep 

autoencoders are proposed and then differentiated by using deep learning networks. Our proposed method evaluates 

whether it is able to identify attacks against IIoT systems based on remote telemetry collected from gas line systems. An 

industrial IoT network needs to be protected from deep random neural networks, according to the author of [18]. A dataset 

from UNSW-NB15 was used as validation for the proposed method. In accordance with the system results, detection 

accuracy was 99.54 percent, and false alarms were low.  According to the author, DL-based IDS approaches can be applied 

to industrial IoT systems [19], [20]. An intrusion detection model using multi-CNN fusion was built by combining several 

convolutional neural networks. The NSL-KDD dataset was evaluated for its ability to detect attacks on industrial IoT 

systems. Author [21] the absence of datasets required to build security solutions in smart environments. For the purpose of 

simulating the traffic of IoT and IIoT networks under various types of cyberattacks, a testbed framework was developed, 

and an experimental environment was created. An experimental testbed containing all types of attacks, including normal 

attacks, generates data for TON-IoT. The authors employed a variety of machine learning and deep learning models to 

analyze the produced dataset in order to encourage future research. DL has been proposed as a method for identifying IIoT 

cyberattacks [22]. Particle swarm optimization was used to optimize neural network hyperparameters. An attack detection 

model was developed using deep random neural networks during the training phase. This model was found to be effective 

based on the results.  The author [23] uses SDN for intrusion detection and illustrates a 95% testing rate for the IoT. An 
SDN-based approach to prevent the detection of hosts after infection is described in [24]. Several datasets have been 

considered for implementation, including ISOT and CTU-13. A 99.2% detection accuracy is achieved when MLP is taken 

into account. A 99.2% detection accuracy is achieved when MLP is taken into account [25].  A proposed scheme for 

identifying botnet attacks in [26] used network flow capability. Detection of botnets was based on Naive Bayes (NB), J48, 

and Bayesian models [31]. Dartmouth's wireless network is used to collect data using detectors. The author describes a 

system that memorizes harmful network behaviours and detects and prevents botnet infections [26]. 

In the KDD99 dataset, 98% of the detections were accurate using the devised approach. The Author [27],  DL-based 

algorithms (e.g. LSTM) and IoT-based algorithms were proposed for detecting botnet attacks using IoT [28]. Among the 

IoT devices analyzed from various manufacturers using the N-IoT 2018 datasets, a detection rate of 99.90% was achieved 

3. METHODOLOGY  

The study examined feed-forward neural networks, gated recurrent units, recessive neural networks, and convolutional 

neural networks. 

3.1.  Deep Feed-Forward Neural Network  

Deep Feed-forward Neural Networks (DFFNN) are used in many currently available deep learning architectures. This type 

of neural network transmits only forward-looking information. Machine learning applications rely heavily on it [29]. A 

hidden layer is created based on the output of each hidden layer node, with weights and biases based on the input from the 

hidden layer. A backpropagation method and loss function are used to adjust the weights to obtain optimal results. The 

backpropagation and loss functions of a network are used to adjust weights to maximize performance. There are three 

entries of historical data on the input layer, three entries on the hidden layer, and one entry on the output layer. A DFFNN, 
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unlike an RNN, only feeds forward at the output and does not give feedback to the network. The limitations of DFFNN 

make it unsuitable for time series forecasting applications such as detecting and classifying faults in secondary distribution 

networks. 

An essential noteworthy learning model is the Feed-Forward neural memory or the multilayer Perceptrons (MLPs).  There 

is too much unpleasantness in the inspiration of a Feed-Forward association. A classifier can be used to characterize data 

using 𝑦 = 𝑓 𝑥(𝑥), for instance. In the Feed-Forward network, the 𝑦 =  𝑓(𝑥) gauge is used to determine the potential gains 

of the limits. By Feed-Forward models, information travels between x and y. Therefore, momentary assessments are key 

in describing f and yielding y. In disjointed neural connections, processing relationships are connected by lightening up 

neural connections. A DFFNN is an ANN made up of a perceptron, a few mystery centres, and a yield neuron with no 

cycles [30]. As neural organization variables may act arbitrarily, this calculation-based information approach places formats 

in minimum arrangements with no help from standards [31]. When solo techniques are pre-prepared, and an AE is explicitly 

used to construct initiation details, union rates and resulting results can be improved [31]. 

3.2.  Deep Auto-Encoder (DAE) 

Using unaided DAEs, a neural organization is performed in a feed-forward manner [32]. Information (𝑥 → 𝑥), 𝑥 is 

meaningful when it is compared to an assortment of information (𝑥)̂ 

The information hubs depict some disguised units of non-straight starting ascribed as vectors. 𝑥 𝑖. The separate components 

of the brain use fewer neurons than the hubs of information so that they can acquire smaller amounts of information. As a 

result, the main credits are known, the spatial dimensions are reduced, and perspectives of the information become apparent. 

Eq. (1) shows the yield layer. 𝑥 𝑖 as a local representation of the information layer at the end of the process 

𝑇(𝑡) =
1 − 𝑒−2𝑡

1 + 𝑒−2𝑡
                                                                                             (1) 

AE calculation relies on encoders and decoders [36], and using deterministic planning and an encoder technique FO [37], 

the information vector 𝑥 𝑖 is transformed into a secret layer representation 𝑧𝑖, thereby reducing the number of codes and 

presenting a dimension 𝑥𝑖 As shown in Equation 2. 

𝑓𝜃(𝑥 𝑖) = 𝑇(𝑊𝑥𝑖 + 𝑏)                                                                                       (2) 

In this graph, 𝑊 = 𝑑0𝑥𝑑ℎ , 𝑑ℎ represents the weighted network, 𝑇 represents the Tanhinitiation utility, 𝜃, [𝑊, 𝑏] represents 

the plan boundaries, and (𝑑0 < 𝑑ℎ) represents the disguised level neurons. In the figure, the hidden layer's output is 

projected. A deterministic plot determines (𝑔𝜃′
) interpretation method, which, in Equation 3, is used to build (𝑔𝜃′

) 

contribution as an estimate 𝑥 𝑖. 

𝑔𝜃 ′(𝑥 𝑖) = 𝑇(𝑊
𝑧𝑖
′ + 𝑏′)                                                                                    (3) 

𝑑0𝑥𝑑ℎ ,  represents the weight framework [𝑊 ′ , 𝑏′ ] by 𝜃 addresses planning boundaries in 𝑊 ′, and b represents 

predispositions. Once the packed representation has been transformed to fit the mysterious surface, it is used for the 

reconstruction of the first data. Norm or little cluster preparation sets (S) undergo a rearranging called a change botch when 

their preparation interactions are described in Eqs. 4 and 5. 

𝐸(𝑥, 𝑥) =
1

2
∑ ||𝑥 𝑖 − 𝑥 𝑖||

𝑠

𝑖

2

                                                                              (5) 

𝜃 = [𝑊, 𝑏] = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐸[𝑥, 𝑥)                                                                           (6) 

3.3. Feature Selection 

Based on the feature 𝑓𝑘 ∈ 𝐹′, 𝑘 − 1,2, … , 𝑝, we can extract the feature subset 𝐹′ ∈ 𝐹. Considering that 𝜓1 , 𝜓2 , … . 𝜓𝑛 is a 

potential value for 𝜓1 , 𝜓2 , … . 𝜓𝑛, the important measure of 𝐹′ can be expressed as Equation 7. 

𝐼𝑚𝑝(𝑓) = − ∑
𝜓𝑖

𝑍
.

𝑛

𝑖=1

log (
𝜓𝑖

𝑍
) − ∑(1 −

𝑛

𝑖=1

𝜓𝑖

𝑍
). log (1 −

𝜓𝑖

𝑍
)                                                   (7) 

𝜓(𝑥) =
1

𝑛
∑ {∏ 𝑚𝑖

′
𝐹

𝑛
𝑖=1 . 𝑘 (

𝑥−𝑋𝑖

𝜎
)}, 𝑧 is the sum of potential values 

Feature vectors are measured by entropy based on how much information they contain. A feature with a high level of 

information has a lower entropy. Position potentials will tend to be similar if an object is uniformly distributed, and feature 

importance will tend to be similar if it is uniformly distributed. Asymmetric distributions, on the other hand, have a lower 

entropy potential. An optimal entropy for a data field is defined by Equation 8 when calculating its potential entropy. 

𝐼𝑚𝑝(𝑓)𝑜𝑝𝑡 = 𝑖𝑚𝑝(𝑓)𝜎=𝜎𝐹′                                                                                (8) 
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This paper employs the nonparametric kernel density estimation method proposed by Hall P for calculating 𝜎. There are 𝜎 

standard deviations between the upper and lower density of each direction. The calculation requires another parameter, 𝑚𝑖 . 

Potential matrices can be calculated from the potential functions in generalized data fields. A feature's importance in 

supervised learning problems depends on the 𝑆𝑤 and 𝑆𝑏 values of the class potential. 

𝑚𝑖 =
𝑆𝑤𝑖

𝜓

𝑆
𝑏𝑖

𝜓
                                                                                                   (9) 

Anywhere  

𝑆𝑤𝑖
𝜓 =

1

𝑛
∑(𝜓(𝑋𝑖) − 𝜓𝑗(𝑥)

𝑛

𝑗=1

(𝜓(𝑋𝑖) − 𝜓𝑗(𝑥))
𝑇

                                                           (10) 

According to Equation 11, the spatial distribution matrix between classes 𝑆𝑏𝑖
𝜓 , 𝐵 is as follows: 

𝑆𝑏𝑖
𝜓 =

𝑛𝑖

𝑛
(𝜓(𝑋𝑖) − 𝜓(𝑋))(𝜓(𝑋𝑖) − 𝜓(𝑋))

𝑇
                                                             (11) 

As shown in Equation 12, there are two distribution matrices for features. 

𝑆𝑡
𝜓 = 𝑆𝑤

𝜓 + 𝑆𝑏
𝜓 =

1

𝑛
∑(𝜓(𝑋𝑖) − 𝜓𝑗(𝑥)

𝑛

𝑖=1

(𝜓(𝑋𝑖) − 𝜓𝑗(𝑥))
𝑇

                                                 (12) 

Where 𝜓(𝑋) =
1

𝑛
∑ (𝜓(𝑋𝑖), 𝜓𝑗(𝑥)𝑛

𝑖=1 =
1

𝑛
∑ (𝜓(𝑋𝑖)𝑛

𝑖=1 , 𝑗 = 1, … , 𝑐. A non-negative matrix would be 𝑆𝑤
𝜓

 and 𝑆𝑏
𝜓

 based on 

the definition above. Normalization refers to normalizing a given feature based on deviations from it. As a result of linear 
transformation, the raw data is transformed into [0-1] values. As shown in Equation 13, the translation function is equal to 

𝑓 =
𝑓 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
                                                                                    (13) 

Data samples are classified as 𝑚𝑎𝑥 or 𝑚𝑖𝑛 according to their maximum and minimum values, respectively. A mass vector 

𝑀 = {𝑚1, 𝑚2, … . 𝑚𝑖 , 𝑚𝑛} is created by multiplying 𝑚𝑖  by the number of features, and MI by the weight of each feature. 

In this case, 𝜎 = {𝜎1 , 𝜎2  . . . 𝜎𝑖 , 𝜎𝑛 }, 𝜎𝑖  is a vector representing the factors affecting the feature. Based on Equation 14, the 

mean of every sample in all directions represents the sample's potential value. 

𝜓(𝑋) =
1

𝑛
∑(𝜓(𝑋𝑖)

𝑛

𝑖=1

                                                                                 (14) 

𝜓(𝑋𝑖) = ∏ 𝑚𝑗
′
𝐹 . 𝑘 (

𝑥𝑗−𝑥𝑖,𝑗

𝜎𝑗
) , 𝑗 represents the 𝑖𝑡ℎ  sample from 𝑗𝑡ℎ . Utilizing the hierarchical clustering method, the best 

subset of features is obtained after determining the importance of the features. It is possible to describe the distance between 

the selected feature subset. 𝐹0 and label class 𝐶, 𝑆𝑏(𝐶;  𝐹 ′) by using Equation 15, which sums the distance between the 

selected features and the label class. 

𝑆𝑏(𝐶; 𝐹′ = ∑ 𝑆(𝐶𝑖 ; 𝑓)

𝑛

𝑖=1

                                                                                 (15) 

Because alternative features correlate with selected features: 

𝑆(𝑓) = ∑ 𝐶𝑈(𝑓, 𝑠)

𝑓𝜖𝐹′

                                                                                (16) 

Within the class distance, Equation 17 defines the update function. 

𝑆𝑤(𝐹′, 𝑠) = 𝑆𝑤(𝐹′) + 𝑠(𝑓)                                                                           (17) 

Furthermore, 𝐹′ must be considered in terms of its size. Classifiers with smaller feature subsets are generally more robust 

because they have fewer selected features. According to the above analysis, each candidate feature has a set of evaluation 

functions defined by Equation 18. 

𝐽(𝐹′) =
𝑆𝑏(𝐶; 𝐹′, 𝑠)

|𝐹′| + 𝑆𝑤(𝐹′, 𝑠)
                                                                               (18) 

In feature subsets, |𝐹′| represents the feature number. 𝐽(𝐹′) is more useful for classification if its value is higher, meaning 

there is a closer correlation between the new feature and the class label. Correlations between selected feature subsets and 

new candidate features are also considered during evaluation. There will be too much correlation between candidate 

features and existing feature subsets, which means that it is redundant and unnecessary to include this feature.  
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There is evidence that new features enhance rather than detract from a feature subset. This results in improved classification 

accuracy, shortened feature subsets, and guaranteed feature subsets. 

3.4. Datasets Used  

Model accuracy is evaluated by using data sets. Data quality is an essential component of Network Intrusion Detection 

Systems (NIDS). 

We will examine three sets of data in this analysis: KDD Cup'99, NSL-KDD, and UNSW-NB15. Here are more details 
about these features. 

3.4.1. KDD Cup’99 Data set 

As a result of the 1998 dataset, DARPA created KDD'99 in 1999. Preprocessing is performed on 41 features per network 

connection. KDD'99 comprises four categories of features: A basic feature set (1-9), a content feature set (10-22), a time-

based traffic feature set (23-31), and a host-based traffic feature set (32-41). In comparison to other data sets, KDD'99 [33]   

&nbsp;&nbsp; contains 4,898,430 records. There are four general types of attacks: DoS, Remote-to-Local, Unauthorized 

Root Access, and Probe.d. Various data mining techniques were used in KDD'99 in order to detect network intrusions. 

During KDD Cup'99, intrusion detection systems (IDSs) mainly used KDD Cup'99 data. KDD's performance is 

significantly affected by two crucial issues with its data set, according to the arithmetical analysis. The KDD data set has 

numerous duplicate records, which is a major problem. There is approximately a 78% and 75% duplicate data set in the 

train and test, respectively. In lieu of numerous records, duplicated records may produce partial learning algorithms. The 
algorithm will, therefore, no longer learn infrequent records. This will prevent the algorithm from learning rare records. 

3.4.2. NSL-KDD Dataset 

NSL-KDD was proposed as a data set containing a selection of records from the entire 1999 KDD Cup data set. Compared 

to KDD Cup'99, NSL-KDD has the following advantages: Classifiers won't be biased against repetitive records as a result 

of excluding irrelevant records from the train set. KDD data indicates that the percentage of records with difficulty records 

depends on how many records are selected from the difficulty record. As a result, different ML (Machine Learning) 

techniques produce different percentages of classification correct. In this way, it becomes possible to conduct structured, 

comprehensive evaluations of ML approaches [34].  

• Rather than randomly selecting small segments from a large dataset, experiments can be performed on logically 

numbered sets. Therefore, different evaluations will produce similar results. 

3.4.3. UNSW-NB15 Dataset 

A new dataset, UNSW-NB15, was published in 2015[35]. The KDD'99 dataset contained 14 attack types, whereas the 

current dataset contains nine attack types. There are 49 features and an assortment of normal and attacked activities in this 

collection, as well as 25,40,044 records with class labels. The number of normal records found is 2,214,876, and the number 

of attacked records is 3,214,283. Among UNSW-NB15's features, there are six main categories: Basics, Flows, Time, 

Contents, Additional Generated, and Labeled Features. Feature 36-40 is referred to as a general-purpose feature. 

Connectivity is defined as 41-47 features. There are also nine types of attacks included in the UNSW-NB15 dataset: 
analysis, fuzzers, backdoors, denial-of-service attacks, reconnaissance, generics, shellcodes, and worms.  

3.5. Evaluation Metrics 

A number of model parameters were evaluated in the evaluation process, including accuracy, precision, sensitivity (recall), 

F1, specificity, and precision-recall. Using Decision Tree models and Machine Learning models, cybersecurity intrusions 

were classified and detected multi-dimensionally. Autoencoders were used in Industry 4.0 WSNs for cyber intrusion 

detection. RF and LR benchmark models were compared with those implemented in the proposed framework to assess how 

well they performed. An evaluation of binary classification models is based on their specificity and precision-recall curves. 

RF models, Decision Trees, and MLPs were used to classify multi-dimensionally using accuracy, precision, and sensitivity. 

A number of metrics were considered when classifying binary data using Autoencoder and LR models, such as specificity, 

precision-recall curve metrics, accuracy, precision, sensitivity, and F1 score: 

True Positives (TP): Upon completion, how many tuples seem intrusive?  

True Negatives (TN): After detection, the number of valid tuples found.  

False Positives (FP): When the detection process is complete, the number of safe tuples is recognised as intrusions.  

False Negatives (FN): As a result of the detection process, how many dangerous tuples are detected? 

Classification models are often evaluated by their accuracy. A model's accuracy is measured by how many cases are 
correctly predicted. As a mathematical expression, it is represented by A and can be calculated by equation 19. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                       (19) 
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A classification model's precision can be measured by how well it performs. The model's accuracy is determined by 

counting the true positives out of all positive predictions or by counting the true positives plus fake positives. Equation 20 

can be calculated by using P as the mathematical representation. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                      (20) 

Its sensitivity measures an effective classification model. Alternatively, you can refer to this number as the true positive 

rate or recall rate. This parameter measures how well the model can identify every positive case in the dataset. Equation 21 

can be used to calculate it mathematically—R represents it. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                        (21) 

A classification model's F1 score indicates how well it does when choosing between two options. F1 scores are helpful 

when accuracy and recall are different. By using equation 22, you can calculate the F1-Score mathematically. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×
𝑅𝑒𝑐𝑎𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                         (22) 

Binary classification is evaluated based on specificity, a performance metric. This metric measures how accurate a model 

is at identifying negative instances out of all possible negatives. Equation 23 shows how to calculate it mathematically by 

using S. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                                (23) 

4. RESULTS AND DISCUSSION  

Figures 1 and 2 provide a comparison of the proposed model's performance across various metrics. These figures are based 

on NSL-KDD data as well as UNSW-NB15 data. The proposed model is effective at predicting and categorizing attacks 

within IIoT networks, proving its significance and applicability. 

 
Fig. 1. Proposed method evaluation (for NSL-KDD). 

 
Fig. 2. Proposed method evaluation (for UNSW-NB15). 

According to Figure 3, the proposed model performed well when applied to the datasets; the detection rate was high, and 

the false positive rate was low. Comparing the model with UNSW-NB15, the NSL-KDD dataset yielded 97.5% precision, 

98% detection rate, and 2.5% and 2% FPR, respectively. 
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Fig. 3. Evaluation of performances for two datasets. 

The proposed approach is compared with a number of established approaches in Figure 4 to illustrate how feature selection 

impacts the effectiveness of the classification algorithm. A reduced UNSW-NB15 dataset shows that the proposed model 

and other models produce similar results. Compared to other approaches, the proposed method has a smaller number of 

false positives (FPR). Compared to the modified KNN model, which was the next-best method, the network intrusion 

detection system has an overall accuracy of 97.9%, 0.2% better than the modified KNN model. 

A lower FPR of 2.5% is also displayed by the proposed method, outperforming other classifiers. Based on all evaluation 

metrics using UNSW-NB15, the proposed approach consistently outperforms. Several factors contribute to its slightly 

improved accuracy, including a robust feature selection mechanism and a rule-based fitness evaluation. 

 
Fig. 4. A comparison of UNSW-NB15's performance. 

A comparison of the recognition rate and false positive rate using NSL-KDD's dataset indicated that our proposed system 

outperformed other models. The developed scheme resulted in DR and FPR of 99 percent and 1.8 percent, respectively. 

With the first four models, destructive events can be identified rationally using a feature selection process. The F-SVM 

solves linear and nonlinear properties of data using shared information and is paired with SVMs to detect attacks. 

Nonetheless, IDS needs to refine its search strategy to make it more effective. Using PCA, CVT, and TANN reduced the 

data measurements. There is a 98 percent efficiency rate for our proposed model, which is higher than other existing models. 

 
Fig. 5. A comparison was made between the proposed model and eight other classifiers. 
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5. CONCLUSION  

The study illustrates the effectiveness of deep learning-based techniques in protecting IIoT networks against evolving cyber 

threats. Using advanced neural networks, our proposed model detects intrusions more effectively than traditional security 

methods. Based on experimental results on data sets such as NSL-KDD and UNSW-NB15, the model proves to be a reliable 

security solution for IoT. Additionally, the study emphasizes the importance of feature selection for classification 

efficiency. IoT devices with limited resources should be eligible for resource-constrained federated learning, lightweight 
deep learning approaches for privacy-preserving intrusion detection, and real-time threat adaptation. To ensure the 

sustainability and resilience of industrial automation systems in the face of ever-evolving cyber threats, IIoT cybersecurity 

must be strengthened. 
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