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A b s t r a c t  
The rapid digital transformation of education, driven by the widespread adoption of smart devices and 

online platforms, has ushered in the era of smart education. While this shift enhances learning 

experiences, it also introduces significant cybersecurity risks that threaten the confidentiality, integrity, 

and availability of educational resources, student data, and institutional systems. This survey examines 

how deep learning (DL) and computer vision (CV) techniques can enhance cybersecurity in smart 

education environments. By reviewing 202 peer-reviewed research papers published between January 

2022 and June 2025 across leading publishers such as ACM Digital Library, Frontiers, Wiley Online 

Library, IGI Global, Nature, Springer, ScienceDirect, MDPI, IEEE Xplore Digital Library, Taylor & 

Francis, Sage, BMC, and Google Scholar, the study explores the integration of these advanced 

technologies to address emerging threats. It highlights the use of DL in intrusion detection, anomaly 

detection, and biometric authentication to protect digital learning platforms. It also examines how CV 

techniques, such as facial recognition, behavioral analysis, and emotion detection, enhance security and 

foster adaptive learning environments. The survey also addresses key challenges, including data quality, 

model interpretability, computational costs, and ethical considerations. By identifying research gaps and 

proposing future directions, this survey offers valuable insights for researchers, educators, and 

policymakers aiming to develop robust, scalable, and ethical AI-driven cybersecurity solutions for smart 

education. 

 
1. INTRODUCTION 

Education has undergone significant evolution, and in today’s digital age, it continues to undergo profound transformations 
[1]. The rapid advancement and widespread adoption of information technology have positioned smart education as a central 
trend in modern education. Smart education and innovative learning approaches are progressively replacing traditional 
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teaching methods by transforming how instruction, management, and services are delivered, making them more intelligent 
and efficient [2]. According to Shu and Gu [3], Badshah et al. [4], and Aggarwal et al. [5], smart education, also known as 
Education 4.0, is defined as the use of advanced technologies like artificial intelligence, big data, cloud computing, and the 
Internet of Things (IoT) to enhance learning to create a more personalized, interactive, and efficient educational environment 
by integrating these tools into the teaching and learning process. E-learning, online tutorials, massive open online courses 
(MOOCs), mobile education (M-education), and other innovative learning methods are being increasingly adopted across 
education systems worldwide [6]. The use of smart education surged dramatically after the COVID-19 pandemic, as the 
global shift to remote communication led to the rapid adoption of these technologies [7]. 

Smart education integrates smart universities, classrooms, and learning environments, all centered on intelligence, 
adaptability, transparency, and personalized learning. It utilizes technologies such as artificial intelligence and machine 
learning to power adaptive systems, automate grading, and provide customized learning recommendations. IoT devices and 
wearables collect real-time data to support contextual and inclusive learning, particularly for students with remote learning 
or disabilities. Cloud computing enables scalable, accessible virtual classrooms, while Blockchain secures academic records, 
verifies credentials, supports content sharing, and simplifies tuition processes. Edge computing ensures faster, local data 
processing, though infrastructure challenges persist. Educational robots and collaborative robots (cobots) enhance hands-on 
learning and teamwork through human–robot interaction. Augmented reality and virtual reality technologies immerse 
learners in experiential, personalized environments, particularly in fields such as engineering and healthcare. With 6G 
connectivity, virtual classrooms benefit from high-quality, 360-degree streaming, while advanced analytics and big data 
empower educators to monitor performance and personalize instruction. Smart devices and platforms further boost access, 
motivation, and DL [3][4][8-10]. These technologies require innovative, flexible pedagogies that promote inclusive, human-
centered education [9]. At its core, smart education relies on smart learners, effective pedagogies, and supportive 
environments, where learners develop both hard and soft skills, educators foster engagement and collaboration, and 
knowledge exchange flourishes. Ultimately, it cultivates adaptable, innovative, and socially skilled individuals [11]. 

The global smart education market reached approximately US$395 billion in 2024 and is projected to grow at a compound 
annual growth rate (CAGR) of 22.5%, reaching US$484 billion by 2025 and US$1,079 billion by 2029. This rapid growth 
is fueled by the widespread adoption of AI, IoT, virtual reality/augmented reality, data analytics, and cloud-based platforms. 
In recent years, the market has expanded exponentially, driven by increased access to remote and customized learning, the 
growing demand for flexible and accessible education options, rising Internet penetration, and strong support through 
government initiatives and corporate funding. The continued shift toward e-learning methods is expected to further accelerate 
this upward trajectory.  

Smart education integrates context-awareness, adaptive support, and flexible interfaces that respond to each learner’s real-
world and online circumstances. Smartphones, laptops, and wearables facilitate personalized interactions and immerse 
students in authentic contexts. A smart learning environment continuously adjusts tasks, interfaces, and feedback to provide 
cross-context support tailored to individual needs [12]. It rests on six key pillars: seamlessly embedding ICT into teaching 
for interactive learning; delivering personalized, adaptive content to meet diverse student needs; leveraging data analytics to 
inform decisions and monitor progress; promoting lifelong learning through easily accessible online resources; blending 
online and offline methods in flexible hybrid models; and ensuring robust digital infrastructure with reliable Internet, devices, 
and software [13]. 

Smart education leverages advanced technologies to enhance academic performance, personalize learning at scale, and 
improve efficiency by automating administrative tasks, allowing teachers to focus more on pedagogy. It engages students 
through interactive, multimedia, and gamified content, making complex concepts accessible and motivating learners, 
especially those with strong knowledge-seeking tendencies [14]. By supporting personalized learning paths, smart education 
enables students to progress at their own pace with targeted support, improving concentration and success rates [15]. It 
promotes flexible, mobile, and autonomous learning, increasing accessibility for remote and underserved communities. 
Smart classrooms foster higher-order thinking, digital literacy, and professional skills essential for the 21st century, while 
providing teachers with immediate feedback and data analytics to tailor instruction [15][16]. Additionally, smart education 
encourages collaboration, creativity, and intercultural understanding, preparing learners for a digital society and lifelong 
success [16]. It drives sustainable development by adapting rapidly to changing educational needs. It expands access to 
quality education worldwide through online and hybrid models, breaking traditional boundaries and fostering global learning 
networks [11][14-21]. Ultimately, smart education addresses the growing demand for upskilling and reskilling, promotes 
lifelong learning, and creates a more efficient, inclusive, and adaptable learning environment for students, faculty, and 
administrators [9][22]. 

These advancements have revolutionized the learning experience, but they have also introduced new cybersecurity threats 
and vulnerabilities. These include privacy violation, unauthorized access and data breaches, phishing and social engineering 
attacks, man-in-the-middle (MitM) attacks, credential stuffing and brute force attacks, distributed denial-of-service (DDoS) 
attacks, malware and ransomware infections, eavesdropping and data interception, insider threats, zero-day exploit, SQL 
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injection and session hijacking, IoT-related vulnerabilities, Insecure network communications, weak authentication, third-
party service risks, software vulnerabilities, physical security risks, and unsecured Bring Your Own Device (BYOD) policies 
[4][9][22-34]. The stakes are exceptionally high because schools increasingly depend on digital infrastructures for both 
administrative and educational functions, and any compromise could expose sensitive student information and severely 
disrupt the learning process. 

Traditional cybersecurity measures form a critical foundation, but they often fall short against the evolving and complex 
threats targeting smart education environments. To address these challenges, researchers are leveraging DL and CV to 
strengthen cybersecurity and provide more adaptive, intelligent defenses. DL and CV algorithms offer robust solutions for 
detecting anomalies, monitoring behavior, and identifying threats within large datasets, thereby addressing the challenges 
that traditional security measures face in combating sophisticated attacks. DL significantly enhances cybersecurity in smart 
education environments by enabling advanced, real-time detection and prevention of evolving cyber threats, including 
malware, phishing, intrusion attempts, and deepfake misinformation. Techniques such as convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) automatically extract complex features from diverse, high-dimensional data 
generated by IoT devices, smart classrooms, and digital platforms, outperforming traditional methods in terms of accuracy 
and scalability. Deep learning-driven intrusion detection systems continuously adapt to new threats, including zero-day 
attacks. At the same time, self-supervised frameworks reduce reliance on labeled data and enhance autonomy in dynamic 
educational networks. By modeling user behavior over time, DL enables the identification of insider threats and anomalous 
activities with high precision. Moreover, adaptive and federated learning approaches enable privacy-preserving, distributed 
cybersecurity defenses across edge and cloud infrastructures, maintaining robustness in decentralized smart education 
settings. Beyond defense, DL powers adaptive cybersecurity education tools that personalize learning, simulate realistic 
attack scenarios, automate assessment, and safeguard platform integrity [35-53]. Computer vision strengthens cybersecurity 
in smart education by enabling real-time monitoring, threat detection, and anomaly recognition across physical and digital 
environments. It powers advanced applications such as person and weapon detection, behavioral analysis, and biometric 
access control to secure school facilities and prevent unauthorized entry. In network security, vision-based techniques, such 
as CNNs, analyze visual representations of data to identify malware and traffic anomalies with high accuracy and scalability. 
Computer vision also detects forgeries, deepfakes, and phishing attempts by scrutinizing visual inconsistencies in images, 
videos, and documents. By integrating physical surveillance with cyber data through multi-modal fusion, CV provides 
unified threat intelligence that identifies insider risks and correlates physical and network anomalies. This synergy improves 
situational awareness, supports human operators with automated alerts and forensic evidence, and enables predictive threat 
analysis. Despite challenges such as adversarial attacks and evolving threats, CV delivers intelligent, context-aware security 
solutions that make smart educational environments safer, more accessible, and more resilient [36][44][54-60]. These 
innovations provide intelligent, scalable, and robust security solutions that safeguard sensitive data and IoT devices while 
upholding educational integrity in increasingly connected and distributed learning environments. By leveraging emerging 
technologies, intelligent systems enhance cybersecurity in smart education, safeguarding sensitive information and ensuring 
the confidentiality, integrity, and availability of critical data and platforms [51][61]. 

This survey examines how DL and CV techniques can improve the security of smart education systems. It aims to offer a 
comprehensive understanding of their potential to strengthen security by enabling more adaptive and intelligent defense 
mechanisms. The contributions of this survey are: 

• To examine the major security threats, attacks, and challenges encountered by smart education systems. 

• To describe the role of DL and CV in strengthening cybersecurity measures for smart education platforms. 

• To explain the synergistic integration of DL and CV for enhancing cybersecurity in smart education. 

• To identify the challenges and limitations encountered when implementing DL and CV to strengthen cybersecurity 
measures for smart education platforms. 

• To highlight the future research directions. 

This survey is structured as follows: Section 2 outlines the materials and methods used in the study, while Section 3 provides 
a review of the current state of the art. Section 4 examines security threats and attacks in smart education, and Section 5 
discusses how DL and CV techniques enhance this domain. Section 6 presents the challenges and limitations encountered 
during the implementation of DL and CV in securing smart education. Section 7 explores the key future research directions, 
and Section 8 concludes the survey. 

2. MATERIALS AND METHODS 

The survey comprehensively explores and synthesizes current research on the integration of DL and CV techniques for 
enhancing cybersecurity in smart education environments. The goal was to identify, categorize, and analyze existing 
approaches, highlighting their strengths, limitations, and open challenges, to provide a roadmap for future research. The 
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authors achieved this by conducting a comprehensive literature search across several academic databases, including ACM 
Digital Library, Frontiers, Wiley Online Library, IGI Global, Nature, Springer, ScienceDirect, MDPI, IEEE Xplore Digital 
Library, Taylor & Francis, Sage, BMC, and Google Scholar. They focused on publications from January 2022 to June 2025. 
They used a combination of keywords and Boolean operators, including terms like “smart education” OR “intelligent tutoring 
systems” OR “e-learning” AND “cybersecurity” OR “cyber threats” OR “attack detection” AND “DL” OR “neural 
networks” OR “machine learning” AND “CV” OR “image analysis” OR “visual surveillance.” They refined the search using 
Boolean logic to target relevant subdomains and limited the results to peer-reviewed journal articles, conference papers, and 
book chapters written in English. 

The researchers ensured the relevance and quality of the selected studies by applying specific inclusion and exclusion criteria. 
They included studies that explicitly addressed cybersecurity issues within smart or digital education systems, incorporated 
DL and/or CV techniques for detecting, preventing, or mitigating cyber threats, and presented original research, reviews, 
frameworks, or empirical evaluations published in English between January 2022 and June 2025. They excluded studies 
unrelated to education or focused solely on general cybersecurity without an educational context, as well as research studies 
lacking technical depth, such as news reports, editorials, and extended abstracts. Additionally, they removed duplicates or 
redundant publications by the same authors with overlapping content. Research studies published before January 2022 and 
those in languages other than English were also excluded. 

The selection process adhered to the PRISMA guidelines and involved four stages: (1) identifying studies by screening titles 
and abstracts for relevance, (2) retrieving and assessing full texts based on predefined inclusion and exclusion criteria, (3) 
evaluating methodological quality and technical relevance, and (4) including 202 studies in the final analysis. To 
comprehensively examine these studies, the researchers developed a multi-dimensional classification framework. They 
categorized each study according to cybersecurity objectives (e.g., authentication, intrusion detection, data privacy, user 
behavior analysis), DL models (e.g., CNNs, RNNs, Long Short-Term Memory networks, Autoencoders, Generative 
Adversarial Networks, Transformers), CV tasks (e.g., facial recognition, behavioral monitoring, object detection, visual 
anomaly detection), and application contexts, e.g., virtual classrooms, learning management systems (LMS), examination 
proctoring, biometric access control.  

Five reviewers manually extracted and independently verified the data, documenting the authors and publication year, 
methodologies and algorithms used, datasets and experimental setups, cybersecurity goals addressed, and performance 
outcomes with comparative baselines for each selected study. Out of the 202 research studies selected from various digital 
libraries for the final analysis, 3 from ACM Digital Library, 2 from Frontiers, 1 from Wiley Online Library, 3 from IGI 
Global, 3 from Nature, 26 from Springer, 29 from ScienceDirect, 22 from MDPI, 36 from IEEE Xplore Digital Library, 2 
from Taylor & Francis, 1 from Sage, 1 from BMC, and 73 from Google Scholar. Fig. 1 illustrates how these research papers 
selected for the survey are categorized. 

 

Fig. 1. Illustrates the categories of these research papers. 

 

Fig. 2 shows the digital databases used to retrieve the research papers for this survey. 
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Fig. 2. Illustrates the digital databases used to retrieve the research papers for this survey. 

 

Fig. 3 illustrates the distribution of research paper sources across various digital libraries. 

 

Fig. 3. Illustrates the distribution of research paper sources across various digital libraries. 

 

Fig. 4 shows how digital libraries distribute the selected papers by publication year. 
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Fig. 4. Shows how digital libraries distribute the selected papers by publication year. 

The researchers conducted a comprehensive analysis of selected studies to examine how DL and CV techniques enhance 
cybersecurity in smart education environments. They gathered data on publication details, research focus, technologies used, 
such as DL models and CV algorithms, and cybersecurity domains addressed, including authentication, intrusion detection, 
and data privacy. They categorized each study by its application area, ranging from student behavior monitoring to biometric 
authentication and anomaly detection.  

Using qualitative synthesis and thematic analysis, they organized the studies by application areas and smart education 
domains and further classified them based on the technological approaches employed. To validate their findings, they 
consulted subject matter experts, cross-referenced results with existing literature, and critically assessed the robustness of 
their conclusions. They evaluated each study’s quality based on methodological rigor, the reliability and validity of findings, 
and relevance to the use of DL and CV in cybersecurity for smart education. As the review relied solely on secondary 
literature, no primary data collection was necessary, and therefore, no ethical approval was required. However, the 
researchers adhered to ethical standards by properly citing sources and avoiding plagiarism. 

Although these criteria provide a structured framework for the review, they also introduce several limitations and potential 
biases. First, limiting the time frame to studies published between January 2022 and June 2025 may exclude foundational 
research that offers critical insights into the evolution of DL and CV in smart education. Second, by focusing solely on DL 
and CV, the review may overlook interdisciplinary or comparative studies that could enrich the understanding of their 
interaction with other educational technologies. Third, restricting the review to English-language publications introduces 
language bias and excludes valuable research published in other languages, thereby limiting the global perspective. Fourth, 
narrowing the scope to peer-reviewed literature may omit cutting-edge research presented in non-traditional formats, such 
as technical reports or corporate research from organizations like Google AI or DeepMind. While peer-reviewed sources 
emphasize established methodologies, non-peer-reviewed work often explores experimental or emerging approaches. 
Moreover, the absence of quantitative data may weaken the review’s analytical depth, as qualitative evaluations alone 
provide limited support for claims. This focus on theoretical perspectives may also cause the review to overlook practical 
implementation challenges, thereby reducing its relevance as smart education technologies continue to evolve. 

3. STATE-OF-THE-ART 

3.1. Overview of Smart Education 

The concept of smart education continues to evolve and varies across institutional, national, and regional contexts. Smart 
education is a technology-enhanced learning paradigm for the digital age that advances beyond traditional web-based, 
mobile, and ubiquitous learning. It prioritizes effective technological design and innovative pedagogical strategies to boost 
learning efficiency and effectiveness [3][62]. It is also described as a self-regulated, motivated, flexible, and resource-rich 
system that connects smart students, smart pedagogy, and smart environments, encompassing both formal and non-formal 
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settings, and promotes personalized learning to help students acquire essential knowledge, skills, and competencies [62]. 
Smart education integrates features such as adaptive and personalized learning, intelligent tutoring systems, real-time 
emotion recognition, IoT-enabled smart classrooms, collaborative tools, multimodal learning support, gamification, and 
interactive learning [63]. Fig. 5 illustrates an environment where these elements collaborate to create a dynamic, learner-
centered educational experience. 

 

Fig. 5. Illustrates a smart education environment. 

A complete smart education system relies on three key elements: smart learners, smart pedagogies, and smart environments 
[64]. Smart learners not only develop sustainable hard skills but also cultivate essential soft skills, including personal and 
social competencies such as communication, teamwork, negotiation, and leadership [11]. Smart pedagogies utilize ICT tools 
and innovative teaching techniques to create meaningful and high-quality learning experiences for future educators, enabling 
them to understand and engage in activities relevant to modern learning [65]. Smart environments integrate software, 
hardware, digital resources, and learner-centered pedagogies to accommodate students from diverse backgrounds, 
proficiency levels, and interests, ultimately fostering the development of crucial skills [11][66]. 

3.2. Development Stages of Smart Education 

Smart education has progressed through four distinct stages, each shaped by advances in technology, evolving pedagogical 
theories, and changing educational practices. From 1983 to 2007, smart education began to emerge, laying the groundwork 
for its development. Between 2008 and 2012, it evolved further as new tools and methods enhanced learning experiences. 
From 2012 to 2018, scholars focused on theorizing smart education, developing conceptual frameworks and models. Since 
2019, educators and institutions have applied these theories and technologies in practice [17]. 

3.2.1. Emerging stage (1983–2007): Foundation and early concepts 

From 1983 to 2005, the term “smart education” began to appear, although “smart” primarily described the cultivation of 
human wisdom rather than advanced technologies. During this period, foundational technologies and conceptual frameworks 
that would later define smart education started to develop. The widespread use of personal computers, the growth of the 
Internet, and the introduction of early computer-assisted instruction characterized this stage. While the concept of “smart 
education” had not yet been fully established, key elements, such as digital learning materials, multimedia teaching tools, 
and early adaptive learning systems, emerged to support teaching and learning. Efforts during this phase focused on using 
technology to enhance traditional instructional methods rather than to fundamentally transform educational models [17]. 
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3.2.2. Evolving stage (2008–2012): Rise of smart technologies in education  

During this stage, the integration of mobile technologies, cloud computing, and data analytics significantly advanced 
educational tools and environments. The emerging concept of “smart education,” inspired by the broader “smart” paradigm 
in urban development and information systems, gained widespread attention. Educational platforms evolved to offer more 
interactive and personalized experiences, featuring real-time feedback, mobile learning, and early forms of learning analytics. 
As a result, educators and developers increasingly focused on learner-centered approaches that enhance flexibility, 
engagement, and customization in the learning process [17]. 

3.2.3. Theorizing stage (2012–2018): Conceptual consolidation and research expansion 

During this period, scholars and institutions formalized the concept of smart education by defining its scope, principles, and 
goals, connecting it to theories such as ubiquitous learning, personalized learning, and intelligent environments. Researchers 
intensified their efforts to integrate AI, big data, and the IoT into education, highlighting how these technologies can enable 
adaptive learning paths, competency-based instruction, and real-time monitoring. They also broadened the focus to address 
ethical considerations, digital literacy, and equitable access [17]. 

3.2.4. Application stage (2019–Present): Implementation and system integration 

The current stage of education is characterized by the widespread implementation and institutionalization of smart education 
practices, which have been rapidly accelerated by global events such as the COVID-19 pandemic. Educational systems adopt 
AI-driven platforms, virtual and augmented reality tools, and cloud-based learning ecosystems to create smart classrooms, 
intelligent tutoring systems, and data-informed decision-making processes across all levels. They focus on delivering 
personalized, adaptive learning tailored to individual needs while building holistic, scalable, and sustainable environments 
that support diverse learners and promote lifelong learning through flexible, remote options. Institutions cultivate critical 
thinking, problem-solving, creativity, and digital literacy skills because these abilities are essential for success in today’s 
workforce [10][17]. Fig. 6 summarizes the essential technologies involved in the four stages of smart education development. 

 

Fig. 6. Summary of the essential technologies involved in the four stages of smart education development. 

3.3. Key Enabling Technologies in Smart Education 

Smart education relies on several key technologies, which are briefly described below. 

3.3.1. Internet of Things (IoT) 

The IoT connects physical devices, vehicles, buildings, and other objects embedded with sensors, software, and network 
capabilities, enabling them to collect and exchange real-time data. In education, the IoT plays a crucial role by integrating 
diverse devices into learning environments, transforming traditional teaching into dynamic, personalized, and collaborative 
experiences. For instance, smart whiteboards enhance interactivity and resource sharing in classrooms. IoT supports 
Education 4.0 by improving learning outcomes, increasing student engagement and retention, and facilitating task-based 
learning, inclusiveness, remote education, and resource management. It enables students and teachers to stay connected and 
access support at any time, promoting inclusivity by aiding students with disabilities through technologies such as automated 
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translation, augmented reality, virtual reality, and smart navigation tools. Remote learning platforms such as Google 
Classroom and Tynker exemplify IoT-enabled global connectivity and flexible learning. Additionally, IoT tracking systems 
enhance student safety and provide valuable insights to educators while automating administrative tasks, reducing teachers’ 
workload, and allowing them to focus on meaningful academic activities [9][10]. 

3.3.2. Big data 

Big data encompasses vast amounts of structured and unstructured information that is difficult to manage but crucial for 
informed decision-making, significantly transforming sectors such as education. In the context of Industry 5.0, big data 
enables educational institutions to personalize learning, monitor student engagement and performance, and align curricula 
with industry needs through predictive modeling and data-driven insights. By integrating big data with technologies such as 
Blockchain and LMS, institutions can secure records, track student interactions, provide real-time feedback, and offer 
personalized recommendations. Applications such as student monitoring systems and automated evaluation tools utilize big 
data to predict concentration levels, identify students who are disengaged, and uncover underlying issues that affect learning. 
Administrative bodies leverage big data to make timely, informed decisions that address evolving market demands. Big data 
drives efficient resource allocation, supports distance learning, fosters continuous improvement, and strengthens educational 
research, ultimately making education more responsive, personalized, and aligned with the dynamic requirements of Industry 
5.0 [10][67]. 

3.3.3. Artificial intelligence and machine learning 

Artificial intelligence and machine learning play pivotal roles in transforming traditional education into smart, adaptive 
learning environments. These technologies enable machines to learn from data, recognize patterns, and make decisions with 
minimal human input. AI-powered tools analyze individual learning styles, preferences, and progress to deliver personalized 
instruction, automate assessments, and support data-driven decision-making. Intelligent tutoring systems, for example, can 
adjust to each learner’s needs and provide targeted feedback, enhancing the learning experience in various contexts, including 
video games [9][67]. 

3.3.4. Robotics 

Robotics technology encompasses the design, construction, and operation of robots capable of performing tasks 
autonomously or semi-autonomously, and its integration into education offers numerous benefits. In classrooms and training 
environments, robots, especially collaborative robots or “cobots,” facilitate hands-on learning, teach programming and 
engineering concepts, assist students with special needs, and foster effective human-robot interaction [9]. Cobots enable 
students to conduct experiments, receive real-time guidance and feedback, and work within immersive virtual reality and 
augmented reality environments. They provide personalized support to students with disabilities, help them navigate learning 
spaces, and promote teamwork and collaboration. By taking on repetitive or hazardous tasks, cobots reduce risks and 
administrative burdens, such as grading, allowing teachers to focus on personalized instruction. Although their integration 
may require infrastructure adjustments, incur significant costs, and raise ethical and data security concerns, cobots greatly 
enrich the educational ecosystem. For instance, the Mirobot Professional Kit by WLKATA Robotics exemplifies a versatile 
cobot designed to enhance teaching and learning through precise, flexible, and multi-platform control. By working with 
cobots, students engage more deeply, develop critical thinking and creativity, and gain practical skills in robotics, automation, 
and programming—skills vital for future industry roles [10][67]. 

3.3.5. Blockchain 

Blockchain is a decentralized, distributed digital ledger technology that securely records and verifies transactions across 
multiple computers, ensuring transparent, immutable, and tamper-resistant data storage. As an enabling technology that 
emphasizes human-centric collaboration, Blockchain offers significant educational benefits. It maintains the integrity of 
academic records, certifications, and credentials in a secure, tamper-proof manner, allowing schools and universities to store 
and manage students’ performance records reliably and access them from anywhere. By tracking students’ progress over 
time, educators can design personalized, effective learning experiences and securely store and share educational content. 
Blockchain also facilitates secure, efficient payment systems for tuition and other fees, which particularly benefits 
international students in distance learning programs. For example, institutions can record degrees and certificates on the 
Blockchain, enabling employers and other institutions to instantly verify their authenticity, reducing fraud and streamlining 
administrative processes. Blockchains enhance transparency, security, and efficiency, making them a transformative tool for 
modern education [10]. 

3.3.6. Augmented reality 

Augmented reality technologies create immersive, interactive digital environments that significantly enhance education by 
simulating real-world scenarios and offering engaging, experiential learning opportunities. In fields such as healthcare, 
engineering, and architecture, students can safely practice skills in virtual settings before applying them in real-world 
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situations. Augmented reality combines digital visuals, sounds, and other sensory inputs to enrich traditional teaching, 
making lessons more interactive and improving comprehension and retention through virtual examples. It reduces training 
costs, enhances learner engagement, and offers flexible access to educational materials at any time and from anywhere. 
Augmented reality also supports inclusive education by catering to diverse learning styles and abilities, helping students with 
disabilities through multi-sensory experiences and improved orientation skills. In medical education, augmented reality 
allows students to interact with virtual anatomical models and practice complex procedures, deepening their understanding 
of intricate concepts. Similarly, augmented reality and virtual reality enable surgeons to rehearse challenging techniques on 
3D models, thereby enhancing their skills without risk to patients. By presenting scientific and technical subjects visually, 
augmented reality and virtual reality boost retention rates, capitalizing on humans’ strong visual learning abilities, supported 
by research showing that people process images far faster than text [9][10][67][68]. 

3.3.7. Virtual reality 

Virtual reality is an immersive, computer-generated technology that simulates realistic or fictional three-dimensional 
environments, playing an increasingly vital role in education. By offering interactive, hands-on experiences, virtual reality 
helps students develop both technical and human-centered skills such as problem-solving and creativity. At the same time, 
personalized learning features track progress and adapt content to individual needs. Its remote collaboration capabilities 
connect geographically dispersed learners and faculty, fostering interdisciplinary teamwork. Virtual reality also provides a 
safe and cost-effective alternative for training in hazardous or complex scenarios, enhancing visualization to prepare workers 
for the evolving demands of the industry. For instance, Harvard University uses virtual reality in its introductory computer 
science course (CS50), allowing over three million students worldwide to feel present in a virtual lecture hall regardless of 
location. Teachers benefit from virtual reality’s capacity to boost student engagement and creativity, supported by 3D visuals 
that stimulate curiosity and imagination. Moreover, virtual reality helps overcome language barriers by offering real-time 
translation or transcription, enabling smoother comprehension and encouraging hesitant students to interact without fear of 
mispronunciation [10][67][68]. 

3.3.8. 6G and Beyond 

6G and beyond fulfill the requirements of a fully connected world by delivering ultra-fast, reliable wireless communication, 
higher data transfer rates, and increased network capacity compared to previous generations. This advanced connectivity 
ensures seamless communication, instant access to educational resources, and effective learning experiences through high-
speed, low-latency networks. By supporting technologies such as augmented reality, virtual reality, and the IoT, 6G enables 
immersive, real-time educational interactions and mobile learning, allowing for learning anytime, anywhere. It fosters global 
collaboration among students, teachers, and experts while safeguarding sensitive data with enhanced security features. In 
laboratories, 6G allows remote access and control of equipment via virtual interfaces, expanding opportunities for distant 
learners. 6G promises to revolutionize smart education by enabling high-resolution 360° video streaming that closely 
replicates physical classroom presence, thereby enhancing remote learning through realistic and immersive experiences. Its 
ultra-low latency and dedicated bandwidth also support precise teleoperation and robotics integration, empowering students 
to engage in dynamic, interactive, and adaptive learning environments that redefine smart education [10]. 

3.3.9. Edge computing 

Edge computing decentralizes computation and data storage by moving them closer to the network’s edge, enabling devices 
near end users—known as edge devices—to process and manage data locally. In education, where numerous IoT devices 
and sensors collect diverse student data, edge computing efficiently handles large data volumes, supports real-time tracking 
of student progress, and allows personalized instructional strategies. By processing sensitive information locally, edge 
computing enhances security and privacy, reducing the risks of data breaches and unauthorized access. It also enables 
seamless interaction in virtual classrooms and enriches learning experiences through low-latency communication. For 
instance, sensors in a smart classroom can record attendance and process the data on-site, eliminating the need for cloud 
validation and providing immediate insights. Edge computing offers substantial benefits, including faster processing, reduced 
latency, improved resource management, and enhanced real-time analytics. Integrating Blockchain with edge computing can 
secure student records, credentials, and credit transfers. Blockchain ensures that digital certificates remain tamper-proof and 
verifiable even if the issuing institution ceases to exist, eliminating intermediaries and enabling smart contracts for automatic 
credit transfers. Educators can also timestamp and track open educational resources on the Blockchain, supporting copyright 
protection and usage monitoring [10]. By combining edge computing and Blockchain, institutions can significantly enhance 
data security, streamline administrative processes, and elevate learning outcomes. 

3.3.10. Advanced analytics 

Educators in smart education utilize advanced analytics, including predictive and prescriptive techniques, to analyze 
historical data, forecast trends, and recommend optimal actions. By uncovering patterns in student performance, behavior, 
and engagement, they make informed, data-driven decisions that boost student success and enhance learning outcomes [9]. 
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Adaptive learning systems further individualize education by adjusting content pace and assessments according to each 
student’s mastery level and activity patterns, providing tailored support that meets evolving educational needs. Moreover, 
AI-driven learning models foster greater collaboration, creativity, and academic achievement within structured learning 
environments [67]. Fig. 7 summarizes the key enabling technologies in smart education. 

 

Fig. 7. Summary of the key enabling technologies in smart education. 

3.4. Benefits of Smart Education 

Table 1 provides brief descriptions of the benefits of smart education. 

TABLE I: SUMMARY OF KEY BENEFITS OF SMART EDUCATION. 

S/No Benefits   Brief Description References 

1 Personalized learning 

Smart education platforms often adapt to individual learning styles and paces by tracking 

students’ progress, pinpointing areas where they need extra support, and offering 

customized resources and activities. For example, when a student finds mathematics 

challenging, the platform offers easier problems and suggests extra videos to help build a 
stronger understanding. Conversely, if a student excels, the platform can introduce more 

challenging issues to foster further growth. 

[69][70] 

2 
Improved communication and 

collaboration 

Smart education technologies facilitate effective communication among learners, teachers, 

parents, and administrators by utilizing email, online platforms, and messaging applications, 

thereby creating a more connected teaching and learning community. For example, teachers 
can quickly share assignments, provide feedback, and send updates. 

[71] 

3 Data-driven insights 

LMS and other intelligent education platforms generate valuable data about student 

performance, enabling teachers and administrators to identify learning gaps, track progress, 

and adjust their teaching strategies as needed. 

[72] 

4 
Enhanced engagement and 

motivation 

Digital tools, including multimedia content, interactive simulations, and educational games, 
engage students and make learning more enjoyable. These resources capture students’ 

attention and spark greater interest in the subject matter. For example, rather than simply 

reading about historical events, students can watch videos or explore virtual reality 

simulations that create a more immersive learning experience. 

[69] 

5 
Mobility, ubiquity, continuity, 

and ease of access 

Smart education uses mobile and wireless networks to enable learning beyond traditional 
classroom boundaries and schedules. By making educational resources and opportunities 

available anytime and anywhere, it integrates learning seamlessly into daily life and ensures 

continuous access. This ubiquity bridges formal and informal learning environments, 

enabling students to engage with content and collaborate seamlessly. Many smart education 

tools prioritize user-friendly design, ensuring that learners from diverse backgrounds and 
with varying technical skills can easily navigate and benefit from these resources and 

platforms. 

[73-75] 

6 Environmental sustainability 

Smart education contributes to environmental sustainability by minimizing the use of 

physical resources such as textbooks and paper. Online learning platforms lower the carbon 

footprint by reducing the demand for printed materials and decreasing the need for 
commuting, which in turn lessens the environmental impact compared to traditional 

education systems. 

[76] 
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3.5. Smart Education Platforms 

Table 2 provides an overview of smart education platforms that support and advance educational sustainability. By 
integrating advanced technologies with innovative teaching methods, these platforms optimize learning processes, minimize 
resource use, and promote sustainable practices that ensure long-term benefits for education systems. 

TABLE I.  OVERVIEW OF SMART EDUCATION PLATFORMS. 

S/No Platform   Brief Description References 

1 Blackboard 

Blackboard has a range of tools that enable educators to design interactive lessons and manage 

assessments with flexibility. It supports virtual classes, allowing students to learn remotely while 

engaging in interactive discussions. This approach strengthens both self-directed learning and 

collaborative education, making the learning experience more effective and dynamic. 

[67] 

2 Moodle 
This platform creates an inclusive learning environment by providing forums, interactive activities, and 
self-assessment tests. It enables educators to tailor content to students’ individual needs and supports 

continuous evaluation, ensuring a focused and effective learning experience. 

[67] 

3 Zoom 

Zoom is a leading online meeting platform that facilitates live lectures and discussion sessions, helping 

reduce the need for travel and saving time and resources for both students and teachers. By streamlining 

communication and minimizing physical mobility, Zoom supports a more sustainable and efficient 
educational process. 

[67] 

4 Canvas 

Canvas enables teachers to design flexible educational content, such as online lectures and assignments 

while fostering dynamic interaction with students. By promoting continuous communication and 

collaboration, the platform enhances the overall learning experience and facilitates the achievement of 

exceptional educational outcomes. 

[67] 

5 Schoology 

Schoology enables educators to design curricula, manage duties, and assess students’ academic progress 

effectively. It fosters collaboration between students and teachers through interactive features, such as 

group discussions and projects, which enhance the overall quality of education. 

[67] 

6 Google Classroom 

The platform integrates seamlessly with other Google tools, enabling teachers to distribute assignments 

and assessments with ease. It also offers an interactive space where students can submit their work and 
receive direct feedback, fostering effective communication and enhancing knowledge sharing.  

[67] 

7 Coursera 

Coursera offers thousands of online courses from leading universities worldwide, provides certified 

certificates, and actively supports continuous education and professional skills development to enhance 

students’ opportunities in the labor market. 

[67] 

8 Udemy 

Udemy offers a diverse range of online courses across multiple fields, enabling learners to access 
flexible content that supports continuous education and professional growth. It also allows instructors 

to create and share training courses, enriching the platform’s content and expanding learning 

opportunities worldwide. 

[67] 

9 Khan Academy 

Khan Academy provides a vast library of educational videos and interactive exercises across numerous 

subjects. Students can access this platform at any time and from anywhere, allowing them to take control 
of their learning and enhance their individual educational experience. 

[67] 

10 Duolingo 

Duolingo makes language learning fun and interactive by using games and exercises that engage learners 

and tailor content to their skill level. This approach makes it an ideal tool for both beginners and more 

advanced learners. 

[67] 

 

3.6. Security Threats and Attacks in Smart Education 

Integrating smart technologies into modern educational environments provides. However, these technologies also create 
serious security risks and open potential attack vectors that threaten the confidentiality, integrity, and availability of smart 
educational data and services. Below are brief descriptions of the various security threats and attacks that smart education 
systems face. 

3.6.1. Privacy violation 

Smart education uses advanced technologies to enrich teaching and learning experiences. However, these technologies 
continuously collect, process, and store large volumes of sensitive personal information, which raises serious privacy 
concerns. Smart classrooms, for example, may deploy facial recognition cameras to monitor attentiveness, emotion-detection 
software to assess engagement, and wearable devices to track physiological signals, such as heart rate and stress levels. While 
these tools aim to personalize learning and boost academic performance, they simultaneously generate detailed student 
profiles that can be misused or inadequately safeguarded. Unauthorized sharing of student data with third-party providers 
and EdTech companies often results in targeted advertising without explicit consent, leaving students and parents 
insufficiently informed about data usage and storage. Weak cybersecurity measures further heighten the risk, as cyberattacks 
on educational institutions and EdTech platforms have exposed sensitive information, including grades and disciplinary 
histories, leading to identity theft and reputational harm. Moreover, some smart learning applications embed location-
tracking features that monitor students outside the classroom, raising ethical concerns about surveillance and autonomy. 
Researchers have extensively examined privacy risks and proposed various solutions to mitigate illegitimate data access and 



 

 

127 Ali et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 115-158 

ensure authenticated data handling, highlighting the urgent need for robust privacy protections in smart education 
[4][9][12][27][67]. 

3.6.2. Unauthorized access and data breaches 

The integration of smart technologies in education has significantly improved teaching and learning, but has also introduced 
substantial security risks, including unauthorized access and data breaches. Unauthorized access occurs when individuals 
infiltrate educational systems without permission, often exploiting weak passwords, phishing attacks, or software 
vulnerabilities, enabling them to alter records, steal sensitive data, or disrupt system operations, as seen in the 2020 Clark 
County School District ransomware attack. Similarly, data breaches involve the unauthorized extraction or exposure of 
protected information, such as students’ academic records, health data, financial details, and behavioral analytics, as 
exemplified by the 2017 Edmodo breach, which compromised 77 million user accounts. Smart classroom IoT devices, 
including smart whiteboards, connected projectors, and student tablets, often lack robust security measures, making them 
easy targets for attackers if they run outdated firmware or lack proper authentication. Internal threats, such as careless or 
malicious actions by staff, accidental leaks, or the abuse of privileges, also contribute to data breaches. Additionally, social 
engineering and phishing attacks trick employees into revealing confidential information or performing harmful actions, 
bypassing technical safeguards. These vulnerabilities, if left unaddressed, can lead to severe privacy violations, financial 
losses, reputational damage, and non-compliance with regulations, underscoring the urgent need for comprehensive security 
measures in smart education environments [22]. 

3.6.3. Phishing and social engineering attacks 

Phishing and social engineering attacks create significant security challenges in smart education environments. As 
educational institutions increasingly rely on digital platforms, cloud-based LMS, and interconnected smart devices, 
cybercriminals find more opportunities to exploit vulnerabilities. Phishing involves tricking users into revealing sensitive 
information, such as login credentials or financial data, through emails, messages, or websites that appear legitimate. 
Attackers often pose as trusted entities, such as university IT departments, faculty, or administrative offices, to deceive 
students, instructors, and staff. For example, an attacker might send a fake LMS password reset request, prompting recipients 
to enter their credentials on a counterfeit site, which criminals then use to access course materials, alter grades, or infiltrate 
institutional networks. Social engineering encompasses a broader range of deceptive tactics that exploit human psychology 
to gain unauthorized access, including pretexting (posing as support staff), baiting (leaving infected USB drives on campus), 
and tailgating (following authorized individuals into restricted areas). Attackers may also exploit online collaboration tools 
and virtual classrooms by impersonating guest lecturers to eavesdrop or steal data. These threats thrive in academic settings 
due to high student turnover, varying levels of cybersecurity awareness, and the collaborative nature of education. The 
widespread use of IoT-enabled devices, such as smartboards, projectors, and remote learning tools, further increases the 
attack surface if institutions lack strong authentication and robust network security. Notably, cybercriminals often 
impersonate trusted parties to breach credentials and internal systems, making phishing hard to detect due to the close 
resemblance of fake and genuine messages. For instance, a 2020 phishing attack cost a college approximately €30,000 in 
recovery expenses, and a separate password compromise that year impacted users at multiple universities, compromising 
around 1,000 accounts and requiring nearly 80 days to resolve [29][30][33]. 

3.6.4. Man-in-the-middle (MitM) attacks 

A MitM attack is a cyber threat where an attacker secretly intercepts and potentially alters communication between two 
parties who believe they are communicating directly. In smart education systems, MitM attacks pose serious security risks 
by compromising sensitive data and eroding trust. These environments rely on network connections through Wi-Fi or the 
Internet, linking various devices and tools such as online learning platforms, video conferencing systems, digital assessments, 
and smart classroom equipment. Attackers can position themselves between a student’s or teacher’s device and the 
educational server or LMS, enabling them to eavesdrop on data exchanges, steal login credentials, alter grades or exam 
content, redirect users to malicious websites, or impersonate legitimate parties. For example, attackers may intercept login 
information over unsecured public Wi-Fi, impersonate a university’s LMS through DNS spoofing or ARP poisoning, hijack 
live video conferences to spy or inject disruptive content and tamper with online assessments by modifying questions or 
answers during transmission—seriously undermining data security and the integrity of smart education systems [77]. 

3.6.5. Credential stuffing and brute force attacks 

Credential stuffing is a cyberattack in which attackers use large volumes of stolen username-password pairs—typically 
obtained from previous data breaches—to access user accounts on different platforms, exploiting the fact that many people 
reuse the same credentials across multiple services. Smart education platforms, such as online LMS, digital libraries, and 
virtual classrooms, often require students, teachers, and staff to log in and store sensitive data like grades, personal details, 
and course materials. Attackers exploit leaked credentials from unrelated breaches, e.g., a compromised social media 
account, to attempt automated logins on these educational systems. If a student reuses the same email and password, an 
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attacker can easily gain unauthorized access, manipulate grades, steal personal data, or disrupt classes. In contrast, brute 
force attacks involve systematically guessing every possible password or encryption key until the attacker finds the correct 
one. Without robust security measures, such as rate limiting or CAPTCHA, smart education platforms become vulnerable to 
brute force attacks targeting student, instructor, or admin accounts. For instance, an attacker might run automated software 
to crack a university’s virtual classroom admin password, gaining control to disrupt sessions, access confidential records, or 
alter course content [78][79]. 

3.6.6. Distributed denial-of-service (DDoS) attacks 

DDoS attacks pose a significant cybersecurity threat to smart education systems, which rely on interconnected digital 
platforms, online LMS, video conferencing tools, cloud services, and IoT devices. In a DDoS attack, attackers control 
numerous compromised devices, often as part of a botnet, to flood a targeted network or service with excessive traffic, 
overwhelming its bandwidth, processing power, or memory. This overload prevents legitimate users from accessing services 
or causes severe performance issues. In smart education, DDoS attacks can disrupt online exams, virtual classrooms, and 
cloud-hosted resources, resulting in class cancellations, data loss, and a decline in trust in digital infrastructure. For instance, 
attackers have launched volumetric attacks on online exam platforms during critical assessment periods, targeted video 
conferencing tools during peak class hours with protocol-level attacks, and overloaded cloud storage hosting e-books and 
course materials, delaying assignments and study sessions. A botnet attack using compromised IoT devices can compromise 
a university’s entire network, impacting both educational and administrative operations. Reports indicate that DDoS attacks 
against educational institutions have surged in recent years; for example, 66 UK universities experienced attacks in 2016, 
the University of Edinburgh faced a successful attack in 2019, and the education sector saw a 102% increase in DDoS 
incidents in 2021, with attacks occurring every three seconds [22][80]. 

3.6.7. Malware and ransomware infections 

Smart education systems utilize digital technologies to enhance teaching and learning experiences; however, this digital 
integration also exposes institutions to significant cybersecurity threats, particularly malware and ransomware attacks. 
Malware, which includes viruses, worms, trojans, spyware, and adware, infiltrates devices like student laptops, teacher 
workstations, interactive whiteboards, and network servers, often spreading through email attachments, malicious 
downloads, or compromised websites. For example, trojans disguised as educational apps or spyware hidden in seemingly 
harmless software can grant attackers unauthorized access to sensitive information, such as student records and exam 
materials. Meanwhile, viruses and worms can infect entire school networks, disrupting teaching and administrative activities 
[22][23][31][81]. Ransomware, a highly disruptive form of malware, encrypts victims’ data or locks systems and demands 
a ransom, typically in cryptocurrency, to restore access. Educational institutions, which heavily depend on digital resources 
yet often operate with limited cybersecurity budgets, have become attractive targets for ransomware attacks; notable cases 
include the University of Utah, Clark County School District in Nevada, Blacon High School in Cheshire, and Lebanon 
School District in New Hampshire, where attacks caused system shutdowns, class cancellations, and extensive recovery 
costs. As ransomware tactics become increasingly sophisticated, employing strong encryption and data exfiltration for 
extortion, traditional cybersecurity methods often fall short [12][23][24][32]. 

3.6.8. Eavesdropping and data interception 

In smart education, where digital platforms, IoT devices, and cloud-based services play a central role in facilitating learning, 
eavesdropping and data interception pose serious security and privacy risks. Unauthorized parties can covertly capture 
sensitive information as it travels across communication channels, exposing students, teachers, and institutions to threats like 
identity theft and academic fraud. Attackers may deploy techniques such as network sniffing to capture unencrypted data 
packets on Wi-Fi or LAN networks, execute MitM attacks to intercept video streams and chat messages during online 
lectures, or exploit poorly secured wireless networks through wireless eavesdropping. They can intercept video conferencing 
sessions on platforms like Zoom or Microsoft Teams, capture login credentials and personal data from LMS, eavesdrop on 
IoT devices such as smartboards and connected cameras, and tamper with shared educational content. Such breaches 
compromise student confidentiality, facilitate intellectual property theft, erode academic integrity, and undermine trust in 
digital learning environments, underscoring the urgent need for robust security measures. 

3.6.9. Insider threats 

Insider threats in smart education pose unique and significant challenges, as they involve individuals within an organization, 
such as employees, faculty, or students, who misuse their authorized access to systems, data, or facilities, either intentionally 
or unintentionally, causing harm. Smart campuses are particularly vulnerable to these threats. Malicious insiders may steal 
sensitive data, alter academic records, disrupt learning platforms, or steal intellectual property. In contrast, negligent insiders 
can cause breaches through careless practices, such as weak password management or falling victim to phishing scams. 
Additionally, compromised insiders, whose credentials or devices attackers have hijacked, can unintentionally facilitate 
further security breaches. For instance, a disgruntled employee might sell student data, an administrator could manipulate 
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grades, or a staff member might tamper with IoT devices to violate privacy. Such actions jeopardize data, network, and 
physical security, damage the institution’s reputation, and undermine trust in smart education systems [22]. 

3.6.10. Zero-day exploit 

A zero-day exploit is a cyberattack that leverages a previously unknown vulnerability in software or hardware, one that 
developers and security experts have had no time to detect or fix [82]. As educational institutions rapidly adopt technology, 
the attack surface for cybercriminals expands, making zero-day exploits a serious threat. Attackers can bypass traditional 
defenses and remain undetected, potentially exposing sensitive student data, disrupting learning activities, or manipulating 
educational content (Waheed et al., 2024). For instance, undisclosed flaws in LMS, vulnerabilities in IoT devices such as 
smart whiteboards or biometric attendance systems, and weaknesses in AI-powered exam proctoring tools or cloud storage 
platforms can all serve as entry points. Real-world scenarios include attackers injecting malicious scripts into online learning 
platforms to alter exams and grades, hijacking IoT classroom devices to spoof attendance or cause disruptions, or exploiting 
AI proctoring software to disable monitoring and facilitate cheating. Such attacks risk compromising students’ data privacy, 
disrupting operations, undermining trust in digital tools, and threatening academic integrity. 

3.6.11. SQL injection and session hijacking 

SQL injection (SQLi) is a code injection technique where attackers insert malicious SQL statements into input fields or API 
requests to exploit vulnerabilities in an application’s database layer, thereby enabling unauthorized access or data 
manipulation. Smart education platforms, which store sensitive student information, grades, course materials, and user 
credentials, are particularly vulnerable when input fields, such as login forms, registration pages, or search bars, lack proper 
sanitization. Attackers can exploit these weaknesses to retrieve confidential data, alter grades or attendance records, delete 
educational content, or bypass authentication. Similarly, session hijacking occurs when attackers steal or predict valid session 
tokens, often through network sniffing or cross-site scripting, to impersonate users and access private accounts, manipulate 
content, or perform unauthorized actions. For instance, if an online learning platform stores session IDs in cookies without 
encryption or secure flags, attackers on the same network can intercept these cookies with tools like Wireshark and gain full 
account access. These threats pose serious risks to educational institutions, especially in remote learning environments where 
databases support online classes and administrative functions. SQLi attacks can disrupt learning, expose confidential 
information, and compromise data integrity, as demonstrated by the shutdown of Malaysia’s School Examination Analysis 
System following an SQLi attack [26][83][84]. 

3.6.12. IoT-related vulnerabilities 

The integration of the IoT in smart education environments, such as smart classrooms, connected devices, and remote 
learning systems, offers many benefits but also exposes significant security and privacy risks. Educators, policymakers, and 
developers must understand these vulnerabilities to address them effectively. Many IoT devices, including smart boards, 
student tablets, and connected projectors, often rely on weak or default credentials, allowing unauthorized users to manipulate 
content or access sensitive student data. For example, a smart classroom’s control system can be breached if default admin 
passwords remain unchanged. These devices continuously collect personal information, such as student identities, learning 
progress, and biometric data, including facial recognition, which becomes vulnerable without strong encryption and access 
controls. Unsecured webcams and microphones in remote learning can be exploited to eavesdrop on or record students 
without their consent. Many devices run outdated firmware that attackers exploit to infiltrate networks, such as smart sensors 
with unpatched software, providing entry to school systems. IoT devices often share networks with critical systems, allowing 
attackers to move laterally—for instance, a compromised smart printer could grant access to sensitive student records. 
Physical access also poses risks, as devices installed in public areas can be tampered with or disabled by unauthorized 
individuals, such as students. Finally, the wide variety of IoT devices and vendors creates inconsistent security standards and 
interoperability issues, as new third-party systems may introduce vulnerabilities when integrated with older devices due to 
incompatible security protocols. 

3.6.13. Insecure network communications 

In smart education, network communications are critical for enabling seamless data exchange among students, teachers, 
administrative staff, and smart devices; however, insecure channels pose a threat to the confidentiality, integrity, and 
availability of educational data. When sensitive information travels over unencrypted or weakly encrypted networks or when 
strong authentication and authorization are not in place, risks escalate. For example, many campuses offer open or weakly 
protected Wi-Fi to support learning anywhere. Without protocols like WPA3, attackers can intercept login credentials, 
emails, or student records via MitM attacks. Similarly, vulnerable mobile apps or LMS that use outdated encryption, such as 
obsolete SSL/TLS versions or lack enforced HTTPS, expose data to eavesdropping and manipulation, potentially leading to 
academic fraud or data breaches. Smart classroom IoT devices, such as smartboards, cameras, and interactive tools, often 
transmit real-time data to cloud platforms. Suppose these communications rely on unsecured channels or default settings 
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without proper encryption and device authentication. In that case, attackers can exploit vulnerabilities to gain unauthorized 
access, inject malicious commands, or disrupt classroom operations. 

3.6.14. Weak authentication 

Weak authentication occurs when systems use easily compromised or insufficient methods to verify user identities, posing 
serious security and privacy risks in smart education environments that rely on digital platforms, IoT devices, and cloud 
resources. In these ecosystems, students, teachers, administrators, and sometimes parents access LMS, smart classrooms, 
online exam portals, and educational IoT devices, but weak authentication, such as simple or default passwords, single-factor 
authentication, shared accounts, and infrequent credential updates, allows unauthorized users to infiltrate these systems. For 
example, attackers can guess or obtain weak passwords to access exam portals prematurely, exploit default credentials on 
smartboards or attendance devices to manipulate or disable them, and use brute-force methods to gain unauthorized access 
to LMS accounts, potentially altering grades or stealing personal data. These vulnerabilities erode trust in smart education 
technologies, compromise student privacy, expose institutions to data breaches, and disrupt the learning process, ultimately 
hindering the effective adoption of innovative educational tools. 

3.6.15. Third-party service risks 

Educational institutions in smart education environments are increasingly relying on third-party service providers for critical 
functions, such as cloud storage, LMS, video conferencing, and AI-driven educational tools. These tools enhance teaching 
flexibility and quality but also introduce significant risks that institutions must manage. These risks include data privacy and 
security vulnerabilities, as vendors often handle sensitive student and staff information that may be exposed through breaches 
or unauthorized sharing, potentially violating laws such as the General Data Protection Regulation (GDPR) or the Family 
Educational Rights and Privacy Act (FERPA), as illustrated by incidents like “Zoombombing” disruptions in 2020. 
Institutions also face service reliability challenges, as their dependence on external providers limits control over uptime, 
which can lead to interruptions during crucial periods, such as exams, that harm academic performance and the institution’s 
reputation. Compliance and legal risks arise when vendors operate under differing jurisdictions or fail to meet contractual 
obligations, potentially exposing institutions to regulatory violations, as seen with apps transferring data without safeguards. 
Vendor lock-in further complicates matters by making it costly and difficult to switch providers, especially when proprietary 
technologies obscure data processing practices and reduce transparency. Finally, ethical and pedagogical concerns arise from 
algorithm-driven tools that may introduce bias or misalign with educational values, such as AI plagiarism detectors that 
produce false positives, requiring careful human oversight to avoid unfair outcomes. 

3.6.16. Software vulnerabilities 

Smart education environments increasingly rely on diverse software platforms, including LMS, virtual classrooms, mobile 
apps, and cloud services, which enhance interactivity and accessibility but also introduce significant software vulnerabilities. 
Attackers exploit weak authentication mechanisms, such as simple passwords without strong policies or multi-factor 
authentication, to launch brute-force or credential-stuffing attacks. For example, in 2020, several universities suffered 
unauthorized access due to unchanged default passwords and misconfigured role-based access controls. Many educational 
applications also lack proper input validation, leaving them open to SQLi and cross-site scripting attacks that compromise 
databases and sensitive data, as seen when a popular online quiz platform leaked exam answers and student records. 
Furthermore, outdated third-party plugins and libraries expose systems to breaches, as exemplified by a virtual classroom 
tool that was exploited via an obsolete video conferencing library to eavesdrop on live classes. Storing credentials in plain 
text on mobile devices and using insecure data transmission methods put accounts at risk of misuse if someone loses or 
compromises the devices. Finally, poor session management, like indefinite login sessions without timeouts, enables 
attackers to hijack user sessions, as demonstrated by phishing attacks that stole session cookies to access instructors’ grading 
dashboards. 

3.6.17. Physical security risks 

Physical security risks in smart campuses pose a threat to the safety of facilities, equipment, and personnel, potentially 
leading to property loss, personal injury, and disruptions to school operations. Theft poses a significant risk, as numerous 
devices and equipment, such as computers, projectors, and laboratory tools, are essential for teaching and learning. 
Inadequate security measures, including weak locks, insufficient surveillance, and poor theft prevention, make these assets 
vulnerable. Unauthorized access to sensitive areas, including computer rooms, laboratories, and administrative offices, also 
compromises security when access controls are lax or ineffective, risking the leakage of confidential information, damage to 
equipment, and a reduction in overall campus safety. Additionally, natural disasters, such as earthquakes, fires, and floods, 
and artificial emergencies, including false alarms and terrorist threats, can cause severe damage to facilities, harm individuals, 
and disrupt services. Without robust emergency plans, communication systems, and disaster prevention infrastructure, 
schools cannot effectively manage these crises, thereby increasing their physical security risks [22]. 
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3.6.18. Unsecured bring your own devices (BYOD) policies 

In smart education, BYOD policies enable students, teachers, and staff to use their personal laptops, tablets, and smartphones 
for learning and administrative tasks, promoting flexibility, collaboration, and easy access to educational materials [34]. 
However, BYOD significantly increases cybersecurity risks by expanding the attack surface and introducing inconsistent 
security measures across diverse devices [25]. Without robust guidelines for device configuration, authentication, network 
segmentation, and data encryption, personal devices often connect directly to institutional servers and IoT-based smart 
classroom systems without proper isolation or access controls. This lack of safeguards exposes sensitive educational data to 
breaches; for instance, an infected student tablet could spread malware throughout the network or allow unauthorized access 
to internal databases if secure VPNs or multi-factor authentication are not in place. Insecure BYOD environments also tend 
to lack mobile device management and endpoint security, thereby increasing the risk of data leaks from lost or stolen devices 
that contain cached credentials or downloaded course content. Furthermore, students often fail to update operating systems 
or install antivirus software, leaving devices vulnerable and complicating efforts to secure the network and protect 
confidential information. 

4. DEEP LEARNING AND COMPUTER VISION 

The increasing complexity of attacks against smart education systems frequently outpaces the capabilities of traditional 
security solutions. As cyber threats become more advanced, these conventional defenses cannot adequately protect the 
unique vulnerabilities of interconnected learning platforms. However, emerging technologies such as DL and CV algorithms 
offer powerful tools for detecting anomalies, monitoring user behavior, and identifying threats within vast datasets [51][61]. 
By protecting sensitive information and ensuring the confidentiality, integrity, and availability of critical data and platforms, 
these intelligent systems greatly enhance cybersecurity in smart education. 

4.1. Deep Learning  

Deep learning has transformed artificial intelligence by strengthening the security of smart education systems. Ali et al. [85], 
Ali et al. [86], and Ali et al. [87] define DL as a branch of machine learning that relies on artificial neural networks with 
many layers to automatically identify and extract intricate patterns and features from vast datasets. Deep learning networks 
analyze vast amounts of unstructured data, such as images, speech, and text, by recognizing patterns and making data-driven 
decisions. Inspired by the human brain, these networks use layers of interconnected nodes to process information through 
input, hidden, and output layers. Data enters through the input layer, passes through hidden layers where the system extracts 
complex features, and emerges as results at the output layer, as shown in Fig. 8. 

 

Fig. 8. Shows how a neural network works. 

This layered structure enables DL models to identify intricate patterns in high-dimensional data and represent raw 
information in a more abstract and meaningful form [88][89]. DL systems enhance their performance as the volume and 
complexity of data grow, enabling them to model complex relationships, solve challenging problems, and operate without 
explicit programming. This capability has fueled their widespread use in data analysis, prediction, decision-making, and 
tasks like classification and automatic feature extraction, which help address challenges in detecting partial or inaccessible 
features [89]. Training these models on large datasets further improves their effectiveness in high-level tasks and supports 
supervised, semi-supervised, and unsupervised learning. Deep learning continues to show great promise in enhancing the 
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accuracy and efficiency of cybersecurity systems, excelling in applications such as image and speech recognition [88]. It 
holds tremendous promise for transforming educational practices by leveraging algorithms that mimic the human brain’s 
neural networks to analyze complex data and uncover patterns for tailoring learning content. While industries such as 
healthcare, finance, and autonomous vehicles have already realized significant benefits from personalized solutions driven 
by DL, their full potential in education, particularly for large-scale personalized learning in higher education, remains 
untapped [90]. With its strength in processing vast amounts of unstructured data, DL excels at classification and automatic 
feature extraction, effectively addressing challenges related to partial detectability and feature accessibility [85]. The rapid 
evolution of GPUs has accelerated the training of large models, boosting both performance and accessibility. As these models 
process increasing amounts of data through multiple computational layers, they continuously refine their predictions, 
achieving higher accuracy and establishing DL as a powerful tool for solving complex, data-intensive problems across 
various domains [87]. 

Deep learning techniques can be categorized into four main areas: deep supervised learning, unsupervised learning, 
reinforcement learning, and hybrid learning, as illustrated in Fig. 9 below.  

 

Fig. 9. Illustrates the different DL techniques. 

▪ Supervised learning 

Supervised learning trains neural networks using labeled datasets, where each input feature is paired with a known output. 
The models predict outcomes based on input data and then compare these predictions to the actual labels to adjust and 
improve accuracy. Deep learning algorithms, such as CNNs and RNNs, are used to perform supervised tasks, including 
image classification, object detection, language translation, and speech recognition. For example, CNNs can automatically 
detect unauthorized individuals in real-time campus surveillance, while spam detection models classify emails as ‘spam’ or 
‘not spam’ by learning from previously labeled examples. These techniques effectively leverage known input-output 
relationships to identify specific threats or anomalies across various applications. 

▪ Unsupervised learning 

In unsupervised learning, neural networks discover patterns and structures within unlabelled datasets by analyzing them 
without predefined labels. Deep learning models, such as autoencoders and generative adversarial networks (GANs), excel 
at uncovering hidden relationships and generating realistic synthetic images. These algorithms perform tasks like clustering, 
anomaly detection, and dimensionality reduction. In education, unsupervised learning helps reveal patterns in student 
behavior and learning styles; for example, clustering algorithms can detect unusual access patterns in student login data, 
signaling potential account compromises. A typical application in smart education security involves using anomaly detection 
models to learn normal network behaviors and flag deviations that may indicate security threats [91][92]. 

▪ Reinforcement learning 

In reinforcement learning, an agent learns to make sequential decisions by interacting with its environment and using 
feedback in the form of rewards or penalties to maximize cumulative rewards. By leveraging DL, the agent continuously 
refines its actions through a feedback loop, learning from both positive and negative outcomes until it identifies the optimal 
strategies. In smart education, this technique powers adaptive tutoring systems that adjust lesson difficulty and recommend 
resources based on student performance, effectively acting as a virtual tutor to maximize each learner’s progress. Likewise, 
reinforcement learning enhances security systems by enabling intelligent access control that dynamically optimizes door 
lock schedules and alarm settings according to usage patterns and threat levels. 
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▪ Hybrid learning 

Hybrid learning combines multiple techniques to leverage their strengths and improve performance across various domains 
[61]. For example, semi-supervised learning utilizes a small set of labeled data alongside abundant unlabeled data to enhance 
results where the availability of labeled scans is limited. Another hybrid approach combines supervised learning with 
reinforcement learning to train robots that utilize pre-trained visual models for enhanced navigation in dynamic 
environments. By integrating two or more DL architectures or combining DL with traditional machine learning methods, 
such as Support Vector Machines (SVM), hybrid models enhance accuracy, efficiency, and resilience. For instance, they can 
apply supervised methods to classify known security threats while using unsupervised techniques to identify novel 
anomalies, ensuring robust protection in smart educational environments. Such hybrid frameworks, like fusing CNN with 
RNN, excel in complex tasks, including medical diagnosis, cybersecurity, and natural language processing, where a single 
model often falls short in capturing diverse data patterns [93]. 

Deep learning encompasses various model types, including CNNs, Recursive Neural Networks (RvNNs), GANs, Federated 
Learning, Transfer Learning, RNNs, Long Short-Term Memory (LSTM) networks, Autoencoders and Variational 
Autoencoders (VAEs), Transformer models, Gated Recurrent Units (GRUs), deep Autoencoders (AEs), Graph Neural 
Networks, Multilayer Perceptrons (MLPs), Deep Belief Networks (DBNs), Self-Taught Learning (STL), Restricted 
Boltzmann Machines (RBMs), Reinforcement Learning (RL), and Deep Neural Networks (DNNs) [85][87][89][94]. Various 
DL methods are employed to tackle complex cybersecurity challenges, selected based on factors such as data volume, issue 
sensitivity, and decision tolerance [95-97].  

Deep learning is revolutionizing smart education by enabling systems to analyze large volumes of student and institutional 
data, recognize patterns, and make intelligent, real-time decisions that enhance personalization, automation, and adaptive 
feedback [98][99]. Educators and institutions are increasingly relying on DL to create personalized learning paths, generate 
tailored educational content, power intelligent tutoring systems, automate grading, and provide detailed feedback —all of 
which save time and reduce bias [46]. Advanced neural networks support adaptive learning platforms that adjust content 
difficulty and recommend resources based on individual progress, while predictive analytics identify at-risk students early, 
allowing timely interventions [63][100]. Integrated with IoT and big data, DL improves smart classroom management by 
monitoring teaching quality and student engagement, recommending content aligned with students’ interests and daily 
activities, and optimizing resource use [63][101-103]. Deep learning continues to transform education by freeing teachers 
from routine tasks and enabling data-driven, student-centered learning experiences with high accuracy in complex tasks such 
as image and audio recognition [46][63][104]. Deep learning-powered security frameworks enhance public safety by 
detecting suspicious activities, preventing unauthorized access, and thwarting security breaches [89]. These methods 
significantly improve anomaly detection, system security, fault diagnosis, and intrusion detection by analyzing real-time 
network traffic and identifying threats more effectively than traditional systems. Unlike conventional approaches that rely 
on static rules, DL focuses on behavioral patterns, enabling more robust malware and fraud detection by recognizing 
malicious actions and uncovering fraudulent transactions within massive datasets. Its capacity to model complex 
relationships enhances predictive maintenance and fraud prevention, although challenges such as large dataset requirements 
and high false-positive rates remain [87]. Overall, DL algorithms demonstrate considerable potential in improving the 
precision of cyberattack detection by autonomously extracting hierarchical features from raw data [86]. 

4.1.1. Roles of DL in Ensuring Cybersecurity for Smart Education 

Recent advances in DL are transforming nearly every facet of computer science, with significant implications for 
cybersecurity, one of the most challenging areas for computers [105]. By adopting DL technologies, organizations can 
strengthen their abilities to detect and counter cyber threats, thereby safeguarding sensitive information and critical 
infrastructure [106]. This section highlights the pivotal roles that DL plays in advancing cybersecurity within smart education 
environments. 

• Intrusion detection and prevention system (IDPS) 

Intrusion detection and prevention systems (IDPS) proactively prevent security attacks by analyzing data patterns and 
identifying abnormal behaviors based on stored records [107-109]. CNNs and RNNs effectively detect malware through 
self-learning. Artificial neural networks monitor network traffic to detect imminent threats [106][110]. In smart education 
environments, IDPS monitors, detects, and blocks malicious activities to safeguard sensitive data, such as student records, 
from malware, unauthorized access, and DDoS attacks [111]. Deep learning significantly enhances intrusion detection 
accuracy and adaptability by automatically extracting complex features from diverse, high-dimensional educational IoT data, 
enabling real-time threat detection with reduced false alarms and improved response to emerging threats such as zero-day 
attacks. Advanced frameworks, such as self-supervised and online DL, enable continuous adaptation without manual 
labeling, making them ideal for dynamic educational networks [46][112]. Overall, DL techniques enhance cybersecurity in 
smart education by efficiently analyzing large-scale data, detecting a wide range of cyber threats, including malware, 
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phishing, intrusion attempts, and deepfake misinformation, and providing adaptive, scalable defenses that surpass traditional 
methods in both accuracy and reliability [35]. 

• Malware detection and classification 

Malware remains one of the most persistent threats in cybersecurity, negatively impacting systems and data. It takes many 
forms, including viruses, trojans, worms, ransomware, adware, miners, and downloaders [113]. The rise of DL has 
transformed malware detection by enabling automatic feature extraction and outperforming traditional machine learning 
methods, particularly through models like Deep Neural Networks (DNN). Deep learning techniques analyze patterns in 
executable files, system logs, and network behaviors to identify and classify malware. Methods such as Autoencoders and 
LSTM networks effectively detect zero-day malware and polymorphic viruses [114]. By quickly detecting and categorizing 
threats like viruses, ransomware, and spyware using DL, signature-based scanning, and behavioral analysis, cybersecurity 
solutions protect smart education platforms from malicious software that could steal sensitive student information or disrupt 
online learning [115]. This proactive defense enables educational institutions to secure digital resources and safeguard the 
privacy of students and staff. 

• Behavioral analysis and insider threat mitigation 

Deep learning effectively models student and staff behavior over time by capturing sequential patterns, such as login times 
and resource access, using architectures like LSTM and Bidirectional LSTM to identify deviations that may signal 
compromised accounts. In smart education systems with IoT sensors or augmented reality/virtual reality components, it 
dynamically learns normal usage patterns and detects unauthorized interventions. By analyzing user activities, including 
access patterns, communication behaviors, and system interactions, DL algorithms establish baseline profiles that reveal 
potentially malicious actions or compromised credentials. Unlike rule-based systems, these models adapt to evolving threats 
by learning from new data instantly, enabling the detection of novel insider tactics, such as unauthorized data access, data 
exfiltration, or unusual privilege escalations. Deep learning also integrates diverse data sources, including network logs, 
emails, and biometric data, to enhance detection accuracy and reduce false positives. RNNs and CNNs capture temporal and 
contextual nuances, thereby improving predictive capabilities. Overall, DL empowers organizations to proactively identify 
and mitigate insider threats with dynamic, scalable, and precise behavioral insights before significant damage occurs [43]. 

• Spam and botnet detection 

Malicious actors rapidly spread spam and botnet attacks by commandeering devices connected to the Internet, often forming 
botnets through infected victim devices controlled via email spam to launch large-scale attacks, such as DDoS attacks [116-
118]. Deep learning techniques, including autoencoders, CNNs, Graph Neural Networks (GNNs), LSTMs, and Deep Belief 
Networks (DBNs), enhance defense by analyzing social network graphs, detecting abnormal behaviors, and extracting deep 
features from network traffic [116][117][119]. These models, including LSTMs, CNNs, transformers, and GNNs, 
automatically identify spam messages and suspicious activities associated with botnets by analyzing text, user behavior, and 
network patterns [120]. By training on real user data and behavior, DL systems effectively flag suspicious content and 
accounts, thereby improving the safety and reliability of online education environments. 

• Fraud detection 

Deep learning models excel at detecting complex patterns and anomalies in large datasets, resulting in more accurate fraud 
identification than rule-based or shallow learning methods [121][122]. For instance, RNNs specialize in modeling sequential 
data, such as transaction histories, by capturing patterns, trends, and dependencies, which enables them to detect unusual 
behaviors indicative of fraud [123]. In smart education platforms, fraud detection plays a critical role in preventing cheating, 
fake registrations, unauthorized access, and financial fraud. Deep learning algorithms, such as CNNs, RNNs, LSTMs, and 
autoencoders, analyze user behavior and transactions to identify subtle anomalies in data. By continuously learning from 
real-time data, these models strengthen security, protect student information, and promote fairness in smart education [124]. 

• Threat intelligence and prediction 

In recent years, network system attacks have posed severe security challenges, prompting researchers to adopt DL models 
for more effective threat detection [125]. Cybersecurity threat intelligence is crucial in proactively defending against 
constantly evolving attacks [126]. RNNs excel at analyzing time-series data and can detect persistent threats by monitoring 
event sequences over time. Autoencoders effectively identify anomalies by learning normal network behavior and flagging 
deviations that signal potential cyber threats. By analyzing user behavior, network traffic, and system logs, DL enhances 
threat intelligence and prediction in innovative education platforms. RNNs, GNNs, and transformers recognize patterns 
associated with malware, phishing, and other attacks, continuously adapting to new methods to ensure a safer and more 
secure learning environment. 

• Adaptive and federated security in distributed learning environments 
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Smart education environments increasingly rely on distributed systems, including classroom IoT devices, remote labs, and 
mobile apps, where edge computing and federated DL enable on-device model training that preserves privacy while sharing 
learned patterns crucial for scalable cybersecurity. By applying transfer learning, lightweight CNNs can be deployed 
effectively on resource-limited devices, ensuring robust yet practical security for smart educational platforms. In these 
decentralized learning settings, DL enhances security and privacy by powering adaptive and federated mechanisms. Adaptive 
security models dynamically detect and respond to evolving threats, such as adversarial attacks, data poisoning, and 
unauthorized access, by analyzing complex patterns in network traffic, user behavior, and model updates, enabling real-time 
resilience without relying on fixed rules. Federated learning collaborates across devices to train models without sharing raw 
data, and DL enhances this approach by supporting encrypted model aggregation and detecting anomalies in local updates, 
thereby validating their integrity and filtering out malicious contributions. Together, these DL-driven, adaptive, and federated 
security techniques deliver scalable, intelligent, and privacy-preserving defenses that are essential for maintaining trust and 
robustness in distributed learning environments [43][44]. 

• Defense against adversarial attacks 

DL systems remain vulnerable to adversarial attacks, where attackers manipulate input data to deceive models, posing 
significant risks in sensitive areas such as autonomous vehicles, healthcare, and defense. To strengthen defenses, researchers 
employ adversarial training by augmenting datasets with adversarial examples, enabling models to learn robust features and 
resist attacks more effectively. Additionally, DL models detect and filter suspicious inputs by recognizing anomalies, while 
novel architectures preprocess data to remove adversarial noise. Techniques such as gradient masking and regularization 
further reduce the effectiveness of attacks by obscuring gradient information and enhancing model stability. Integrating 
Explainable AI (XAI) helps educators and administrators interpret alerts and make informed security decisions. In smart 
education, these DL defenses protect sensitive student data, secure IoT devices, and ensure the integrity of online assessments 
and communications [36-38][40-42][46][51][52]. Moreover, incorporating DL into cybersecurity curricula equips future 
professionals to counter sophisticated AI-driven threats, such as deepfakes [37]. Overall, DL significantly enhances 
cybersecurity in education by providing intelligent, adaptive defenses; however, ongoing research remains essential to 
address the evolving tactics of adversaries [35]. 

• Secure and adaptive cybersecurity education tools 

Deep learning, a neural network–based subset of machine learning, is transforming cybersecurity education by powering 
intelligent, adaptive, and secure learning tools. These tools personalize content in real-time by analyzing learners’ data, such 
as interaction patterns and quiz results, to adjust the difficulty, suggest targeted resources, and tailor scenarios to individual 
needs. They simulate realistic cyberattack scenarios using generative models, giving students hands-on experience with 
sophisticated threats. Deep learning also automates complex assessments, such as code analysis and threat detection, 
delivering precise and timely feedback that reduces instructor workload. Additionally, it monitors learner behavior to detect 
anomalies such as disengagement or cheating, safeguarding the integrity of the learning environment. Furthermore, by 
embedding DL–based security measures, such as evolving intrusion detection systems, educational platforms can protect 
sensitive data and intellectual property. Altogether, DL drives the development of more innovative, more responsive 
cybersecurity education, equipping professionals to defend effectively against advanced cyber threats [53]. 

4.2. Computer Vision 

Computer vision is transforming the way computers interpret digital images and videos, playing a vital role in smart 
education environments. Computer vision is a branch of AI and computer science that focuses on designing algorithms and 
models that enable machines to detect, classify, and analyze visual information, such as images and videos, in ways that 
mimic human vision and perception [89][127-130]. By integrating image processing, video analytics, and advanced AI 
techniques, CV allows machines to automatically interpret their surroundings and extract meaningful insights from visual 
data, thereby replicating key aspects of human visual understanding. 

With the surge in data availability and computational power, CV has become increasingly vital for accurate object 
recognition and generating actionable insights in fields such as education. A CV system interprets visual data through 
interconnected stages: capturing images or videos, preprocessing to enhance data quality, extracting key features such as 
edges and corners, recognizing objects by comparing these features to known databases, tracking detected objects over time, 
and analyzing the results to produce meaningful outputs. Techniques such as classification, object detection, image 
segmentation, and facial recognition automate tasks like monitoring and tracking, which support student safety during 
transportation. Powered by AI and CNNs, CV systems efficiently detect, classify, and track objects by learning from vast 
datasets and leveraging advanced GPUs [89][127]. These capabilities enable real-time processing in complex environments, 
supporting applications in autonomous vehicles, medical imaging, surveillance, industrial automation, and education. While 
facial recognition offers benefits like enhanced student monitoring and safety, it also raises concerns about data privacy and 
potential misuse due to data leaks. By integrating object detection and facial recognition, modern systems improve situational 
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awareness, support law enforcement, and enhance security measures, ensuring timely responses to emergencies and effective 
traffic management. 

Computer vision employs a range of techniques that enable machines to analyze and interpret visual information from the 
real world. These algorithms address a variety of tasks, including image classification, object detection, and image 
segmentation. Additionally, they support feature detection and description, image alignment and registration, as well as 
optical flow and motion estimation [89]. The widely used CV algorithms include: 

▪ Scale-Invariant Feature Transform (SIFT) algorithm 

The SIFT algorithm, developed by David Lowe in 2004 at the University of British Columbia, is a robust CV method for 
detecting and describing local features in digital images. By identifying key points and generating distinctive descriptors, 
SIFT effectively supports object detection and recognition while remaining invariant to changes in scale, rotation, 
illumination, and viewpoint shifts [131]. The algorithm operates through four main steps: detecting scale-space extrema 
using the Difference of Gaussian (DoG); refining key points for stability; assigning orientations based on local gradient 
directions to achieve rotation invariance; and generating key point descriptors that create resilient feature vectors [132][133]. 
In smart education, SIFT enhances CV applications, boosting interactivity, monitoring, and security. It ensures accurate 
student identity verification and automated attendance by reliably matching facial features under varying conditions. During 
online examinations, SIFT detects cheating and anomalies by comparing frames to spot unauthorized objects or suspicious 
movements. It also enables gesture recognition and interaction tracking in AR-based learning, facilitating smooth recognition 
of educational materials and physical actions. Furthermore, SIFT strengthens smart classroom surveillance by analyzing 
student behavior and identifying unusual activities, thus improving safety and engagement [134][135]. 

▪ Speeded Up Robust Features (SURF) 

SURF is a patented CV algorithm renowned for its speed and accuracy in feature detection and description, making it a 
popular choice for tasks such as object recognition, classification, image matching, and 3D reconstruction [136]. It works in 
two main stages: first, it extracts features by selecting interest points using a Hessian matrix approximation; then, it generates 
descriptors by analyzing wavelet responses within oriented square regions around each key point [137][138]. By using box 
filters to approximate the DoG and leveraging integral images, SURF achieves high computational efficiency. Its robustness 
to image transformations and fast processing make it widely adopted in applications like object and face recognition, real-
time tracking, image stitching, and 3D modeling [139]. 

▪ Viola-Jones object detection algorithm 

Developed by Paul Viola and Michael Jones in 2001, the Viola-Jones object detection algorithm pioneered real-time face 
detection and can be trained to detect various objects in images. While its training phase is relatively slow, it achieves fast 
and accurate detection during execution [140]. The algorithm scans multiple sub-regions of an image at various scales and 
positions, utilizing Haar-like features to capture key facial structures. It operates through four main steps: selecting Haar-
like features, such as edge, line, and four-sided features, creating an integral image for efficient computation, applying 
AdaBoost to choose the most relevant features and boost accuracy, and constructing classifier cascades to discard non-face 
regions and accelerate detection quickly [141][142]. This method remains widely used in real-time applications, including 
face and object tracking and video-based attendance systems, and it laid the foundation for modern face detection 
technologies [143]. 

▪ Eigenfaces Approach using Principal Component Analysis (PCA) algorithm 

The Eigenfaces approach, a foundational face recognition technique based on linear algebra and dimensionality reduction 
through principal component analysis (PCA), identifies faces by projecting high-dimensional images onto principal axes 
derived from the most significant eigenvectors of the image covariance matrix. First introduced by Sirovich and Kirby in 
1987 and formalized by Turk and Pentland in 1991, this method efficiently captures the most significant features of facial 
data while reducing dimensionality without losing critical information [144]. Beyond face recognition, researchers have 
applied Eigenfaces to handwriting recognition, lip-reading, medical image analysis, and other fields [145]. Although easy to 
implement and computationally efficient, the technique relies on well-centered training images and remains sensitive to 
variations in lighting and scale. 

Computer vision encompasses a wide range of techniques and applications, including 3D vision and reconstruction through 
structure-from-motion and stereo vision, as well as face identification and recognition using algorithms such as Viola-Jones, 
Fisherfaces, and FaceNet. It also enables image synthesis with GANs and variational autoencoders, pose estimation through 
tools like OpenPose and MediaPipe, and super-resolution using methods like Bicubic Interpolation and Super-Resolution 
CNNs. Researchers apply Autoencoders and One-Class SVM for anomaly detection, employ tracking algorithms such as the 
Kalman Filter, Mean-Shift, and CamShift, and develop augmented reality experiences using Simultaneous Localization and 
Mapping or Marker-based AR. Additionally, they enhance and denoise images using techniques such as Non-Local Means, 
Total Variation Denoising, and Gaussian and Bilateral Filters [89]. 
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By leveraging data from cameras and CCTV, CV enhances surveillance, supports informed decision-making, and facilitates 
effective forest management and conservation efforts [89]. In smart education, CV plays a crucial role by enabling the real-
time analysis of visual data to enhance teaching, learning, and classroom management. These systems monitor student 
posture and engagement, providing teachers with immediate feedback to adjust instruction and boost learning outcomes 
[131][146][147]. They also track teachers’ gestures, making lessons more interactive and dynamic and enhancing educational 
content design through advanced visual processing and 3D coordinate transformations. Computer vision frameworks enable 
intelligent education assistance systems that provide interactive visualizations, simplify complex information, and facilitate 
personalized learning [148]. In immersive virtual reality settings, these technologies analyze students’ cognitive engagement, 
enabling the provision of tailored guidance and support [131]. For young learners, vision-based systems recognize objects 
and track interactions, creating individualized and engaging early education experiences [147]. When integrated with the 
IoT, CV further enables smart learning environments that monitor attention and streamline classroom management. Overall, 
these technologies enhance education by making it more interactive, adaptive, and data-driven, with proven benefits for 
student engagement, instructional quality, and educational research [131][146-148]. 

4.2.1. Roles of CV in Enhancing the Security of Smart Education 

Computer vision significantly strengthens cybersecurity by integrating intelligent surveillance, biometric authentication, 
automated anomaly detection, advanced video analytics, facial recognition, flaw detection, and object detection into physical 
security systems. These technologies work together to identify suspicious activities and potential threats more accurately and 
efficiently. Some of the roles of CV in enhancing the security of smart education include the following. 

• Enhancing physical access and monitoring 

Computer vision integrates physical and cybersecurity in educational facilities by utilizing biometric facial and iris 
recognition to prevent unauthorized access to labs, data centers, exam halls, and offices. Additionally, tailgating detection 
alerts authorities when multiple individuals attempt entry with a single credential. Beyond access control, CV enhances 
physical access and monitoring across various domains, including healthcare, security, transportation, and smart 
infrastructure. It supports inclusive navigation for the visually impaired through obstacle detection and real-time guidance, 
enables touchless gesture-based interfaces in hygiene-sensitive areas, and automates identity verification for secure entry. 
Additionally, it enhances monitoring and surveillance by identifying real-time activities, detecting environmental hazards 
such as fires or spills, and managing crowd flow and traffic to prevent congestion and accidents. By precisely processing 
visual data and interpreting context, CV bridges digital intelligence with physical environments, creating safer, more 
accessible, and responsive spaces [36][44][54][55]. 

• Secure smart classrooms and student surveillance 

Computer vision, through advanced systems like YOLOv5, plays a crucial role in enhancing security, monitoring, and 
learning outcomes in smart classrooms by detecting unusual behaviors, such as unattended devices or unauthorized access, 
to prevent insider threats and equipment tampering. It controls access and verifies identities using facial recognition, ensuring 
only authorized individuals enter school facilities. Automated tracking records attendance in real-time, reducing 
administrative work and maintaining consistent oversight. By analyzing facial expressions, body language, and posture, it 
assesses student engagement and emotional states, enabling teachers to adjust their methods dynamically. Surveillance 
cameras equipped with CV detect intrusions or suspicious activities, generating real-time alerts to address potential threats. 
These systems also monitor student participation and interaction, track gaze and gestures to evaluate teaching effectiveness 
and detect cheating during exams by spotting unauthorized behaviors or devices. Additionally, CV enforces health protocols, 
including mask usage, social distancing, and temperature checks, while logging visual data for retrospective analysis, dispute 
resolution, or as evidence in incidents such as bullying or vandalism. Overall, video-based analysis strengthens both learning 
analytics and cybersecurity by providing actionable insights and ensuring academic integrity in proctored settings. 

• Detecting forgery, deepfakes, and phishing 

Detecting forgery, deepfakes, and phishing requires analyzing digital content to uncover signs of manipulation or deception. 
Advanced techniques examine images, videos, and messages for inconsistencies, altered elements, and fraudulent patterns, 
enabling swift identification and prevention of these threats. Computer vision combats forgery, deepfakes, and phishing by 
analyzing subtle visual and behavioral cues that reveal manipulation or deception. In forgery detection, it uncovers tampering 
by spotting inconsistencies in lighting, shadows, textures, duplicated image regions, and splicing artifacts that humans often 
miss. For deepfake detection, CV exposes AI-generated content by identifying facial anomalies, such as unnatural eye 
blinking and lip-syncing, detecting irregular motion across frames, analyzing physiological signals like micro-expressions, 
and training classifiers on real versus synthetic data. In phishing detection, it automatically compares website screenshots to 
legitimate designs, extracts and examines text through optical character recognition (OCR) to spot spoofed branding, applies 
visual similarity models to detect counterfeit login pages, and verifies logos to flag unauthorized usage. Together, these 
advanced image and video analysis techniques empower CV systems to identify malicious manipulations efficiently and 
accurately [58][59]. 
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• Analysis of integrated cyber-physical threat  

Computer vision enhances integrated cyber-physical threat analysis by enabling real-time interpretation of visual data from 
physical environments, thereby bridging cyber and physical security domains. It strengthens unified threat intelligence and 
insider risk detection through continuous monitoring, detecting anomalies such as unauthorized physical access or suspicious 
behavior before data leaks occur. Specifically, CV systems detect physical intrusions by recognizing human presence, 
tampering, and restricted objects; identify anomalies signaling cyber-attack precursors or consequences; and fuse visual data 
with network logs, sensor readings, and user behavior analytics for a comprehensive threat perspective. Additionally, these 
systems automate monitoring tasks, provide visual evidence for investigations, support forensic event reconstruction, and 
contribute to predictive threat models by learning from past incidents. Together, these capabilities enhance situational 
awareness, expedite incident response, and substantially improve the security of modern cyber-physical systems 
[44][54][59]. 

• Intrusion and anomaly detection 

In smart education environments that rely on interconnected devices, IoT infrastructure, and continuous access to digital 
resources, robust security remains crucial. Intrusion and anomaly detection play a vital role in protecting these systems from 
internal misuse and external cyber threats. By integrating CV technologies with advanced DL algorithms, institutions can 
automatically monitor and analyze visual data streams, such as CCTV footage, classroom cameras, and biometric access 
points, to detect suspicious activities in real-time. Using techniques like object detection, facial recognition, and behavioral 
pattern analysis, CV systems can identify unauthorized access, detect abnormal behaviors, and flag unusual activities that 
deviate from expected patterns. For example, these systems can secure physical entry points to prevent unauthorized 
individuals from accessing sensitive areas and monitor virtual learning spaces to detect anomalies, such as credential sharing 
or identity spoofing. By combining CV with DL methods, such as CNNs for feature extraction and RNNs for modeling 
sequential behavior, the accuracy in distinguishing harmless irregularities from genuine threats is improved, thereby reducing 
false positives and enhancing automated alerts. Additionally, CV offers visual intelligence capabilities that analyze data from 
surveillance cameras, satellites, and digital devices to identify threats [149][150].  

• Detection of suspicious objects 

In smart education environments, advanced technologies such as IoT devices, smart classrooms, and surveillance systems 
drive the need for robust security measures. Among the various risks, unauthorized or potentially dangerous objects within 
school premises pose a serious threat to the safety of students and staff. Computer vision automates the detection and 
assessment of such suspicious items, significantly strengthening campus security. Using high-resolution cameras and DL 
algorithms, CV systems continuously monitor classrooms, hallways, entrances, and other sensitive areas. They rely on object 
detection models, such as CNNs, and advanced architectures like Faster R-CNN, YOLO, and Single Shot MultiBox Detector 
to identify unattended bags, concealed weapons, or unusual objects in real-time with high accuracy. When these systems 
detect a threat, they instantly trigger alerts, lock access points, and notify security personnel to enable swift intervention, 
minimizing harm and reducing reliance on error-prone manual monitoring. Integrating CV-based object detection with 
access control and emergency response systems creates a multi-layered security framework that enhances situational 
awareness and supports proactive threat mitigation. For example, if the system spots an unattended package near an entrance, 
it can cross-check entry logs to trace its source while restricting access until the area is secure. This capability to detect and 
respond to suspicious objects in real-time ensures a safer educational environment [151][152]. 

• Real-time indoor mapping 

Real-time indoor mapping utilizes advanced CV algorithms to generate accurate, continuously updated representations of 
indoor spaces, including classrooms, laboratories, libraries, and dormitories. Unlike static blueprints, these dynamic maps 
capture changing spatial layouts and detect structural or occupancy modifications in real-time by leveraging depth cameras, 
LiDAR sensors, and simultaneous localization and mapping (SLAM) techniques. In smart education, this technology 
enhances security and situational awareness by enabling precise tracking of individuals’ movements without relying solely 
on manual surveillance. Computer vision systems can automatically detect unusual behaviors, like unauthorized access or 
unexpected gatherings, and trigger instant alerts to security teams. Integrated with facial recognition and access control, real-
time mapping ensures seamless identity verification and reduces risks of impersonation or unauthorized entry. During 
emergencies such as fires or intrusions, dynamic maps provide first responders and administrators with up-to-date 
information on evacuation routes, occupancy, and obstacles, supporting rapid and informed decision-making. By embedding 
real-time indoor mapping into smart education infrastructures, institutions foster a proactive and adaptive security framework 
that not only deters threats but also promotes a safer, more resilient learning environment aligned with intelligent campus 
management goals. Additionally, by generating digital maps and tracking real-time movement through security cameras, CV 
helps optimize space usage and improve emergency response effectiveness [153]. 
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Computer vision significantly enhances cybersecurity in smart education by enabling advanced real-time monitoring, threat 
detection, and anomaly recognition within educational settings. By employing techniques such as person detection, weapon 
identification, and behavioral anomaly detection—often integrated with digital twin models of school buildings—these 
systems monitor and respond rapidly to security incidents, improving the safety of students and staff [57]. In network 
security, CV methods, particularly CNNs, transform network data into visual formats to detect phishing, malware, and traffic 
anomalies more effectively, delivering high accuracy and scalability that are well-suited for the dynamic nature of smart 
educational environments [60]. Overall, CV technologies provide intelligent, automated, and context-aware security 
solutions that enhance cybersecurity in smart education. Ongoing research aims to overcome current limitations and optimize 
their implementation [57][60]. 

4.3. Synergistic Integration of DL and CV for Enhancing Cybersecurity in Smart Education 

Integrating DL and CV technologies offers a transformative approach to enhancing cybersecurity in smart education 
environments. These systems, which rely on interconnected digital devices, IoT infrastructure, and cloud-based resources, 
face significant cybersecurity challenges due to the large volume of sensitive data and the constant need for real-time 
interactions. By combining DL’s robust pattern recognition with CV’s ability to interpret and analyze visual data, institutions 
can deploy a comprehensive, proactive defense mechanism. The key applications of this integration in smart education 
cybersecurity include: 

4.3.1. Real-time intrusion detection through video surveillance 

In modern smart education environments, protecting students, staff, and infrastructure is vital, and real-time intrusion 
detection through video surveillance plays a key role in comprehensive cybersecurity. This advanced system integrates DL 
and CV to deliver precise, efficient, and automated monitoring across campuses. High-resolution cameras, strategically 
installed, continuously stream live video feeds to DL models—primarily CNNs, that detect, classify, and analyze human 
activity. Using architectures such as YOLO or Faster R-CNN, the system quickly identifies multiple individuals in each 
frame, distinguishing authorized personnel from intruders based on visual cues and access data. It goes beyond detection by 
employing behavioral anomaly detection with RNNs or transformer-based models to examine motion patterns over time, 
flagging suspicious behaviors like loitering, trespassing, or unauthorized entry. This adaptive system continually improves 
its detection accuracy and reduces false alarms by learning from new data. Coupled with IoT-enabled access controls and 
alarms, it can automatically alert security staff, lock doors, or trigger deterrents, ensuring swift mitigation of threats. By 
focusing on behavior and object detection rather than identity, the system upholds privacy while enhancing safety and 
enabling proactive, responsive protection for smart education facilities [154-159]. 

4.3.2. Facial recognition for secure access control 

In smart educational environments, secure and efficient access control is vital to safeguard sensitive data, protect physical 
resources, and ensure the safety of students and staff. By combining DL and CV, facial recognition technology provides an 
advanced, non-intrusive solution for real-time, automated identity verification. DL-based facial recognition systems 
authenticate students, staff, and visitors at entry points by matching live camera feeds with stored biometric data with high 
accuracy. This approach minimizes identity fraud and guarantees that only authorized individuals can access restricted areas, 
such as laboratories and data centers [160-163]. 

4.3.3. Behavioral anomaly detection in classrooms and halls 

Behavioral anomaly detection utilizes DL and CV to continuously monitor and analyze individuals’ behaviors in educational 
settings, such as classrooms and hallways. In smart education cybersecurity, this proactive approach enhances the safety of 
students and staff by detecting harmful or suspicious activities early. By combining CV with RNNs or transformer-based 
models, the system learns normal patterns of behavior. It quickly flags deviations such as loitering, aggressive gestures, or 
unusual group formations, which enables timely intervention to prevent bullying, violence, or other security threats [164-
166]. 

4.3.4. Weapon and object detection for threat prevention 

In smart education environments, safeguarding students and staff requires effective weapon and object detection systems 
that leverage DL and CV technologies to identify and neutralize threats in real time. Advanced DL models, primarily CNNs, 
trained on extensive datasets of weapons and suspicious objects, extract complex spatial and semantic features from visual 
data to accurately distinguish threats from harmless items. These systems analyze continuous video feeds from strategically 
placed cameras, utilizing techniques such as region proposal networks and multi-scale feature pyramids to locate and classify 
objects in each frame. Popular architectures such as YOLO, Single Shot MultiBox Detector, and Faster R-CNN strike a 
crucial balance between accuracy and real-time performance, ensuring timely detection. To minimize false positives and 
enhance reliability, the system incorporates contextual awareness by assessing object size, shape, and behavior and utilizes 
temporal tracking to detect concealed weapons across multiple frames. Upon identifying a threat, it instantly sends automated 
alerts to security personnel and connected cybersecurity systems, facilitating swift investigation and response. Integration 



 

 

140 Ali et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 115-158 

with digital twin models of school facilities further streamlines threat localization and coordinated action. Additionally, 
continual learning mechanisms enable the system to adapt to new threats and varied environments by updating detection 
models with fresh data, sustaining high accuracy over time [167-169]. 

4.3.5. Automated attendance and identity verification 

Automated attendance and identity verification systems enhance the security and efficiency of educational environments by 
integrating advanced DL and CV technologies. These systems use state-of-the-art architectures, including CNNs and 
transformer-based models, to analyze video feeds or images captured at entry points and within classrooms. They first detect 
and isolate human faces with high precision, employing robust algorithms such as Multi-task Cascaded Convolutional 
Networks (MTCNN) or YOLO to ensure real-time, reliable face localization, even under challenging conditions like poor 
lighting, occlusion, or varied poses. Next, they perform facial recognition by converting detected faces into compact, high-
dimensional feature vectors using deep feature extraction networks, such as FaceNet or ArcFace, and compare these vectors 
against a secure, pre-enrolled database to verify identities instantly. To prevent spoofing, integrated liveness detection models 
distinguish between live faces and fake inputs, such as photos, videos, or masks. Once verified, the system automatically 
records attendance with precise timestamps and locations, thereby minimizing manual errors and providing audit trails to 
meet security and administrative needs. Seamless integration with school information systems enables real-time alerts for 
unauthorized access attempts, supporting proactive threat mitigation. These systems also uphold data privacy and regulatory 
compliance through encryption, secure storage, and strict access controls. By replacing manual roll calls with facial 
recognition or gait analysis, CV-based attendance systems maintain data integrity, prevent proxy attendance, and ensure high 
accuracy under diverse conditions, ultimately strengthening both academic management and campus cybersecurity [170-
174]. 

4.3.6. Cyber-physical threat detection through digital twin models 

In smart education environments, robust cybersecurity relies on protecting both cyber and physical assets from increasingly 
sophisticated threats through the synergistic integration of DL, CV, and digital twin models. Digital twins serve as high-
fidelity virtual replicas of physical and educational infrastructure, including buildings, network devices, IoT sensors, and 
connected endpoints, continuously mirroring real-time data streams to simulate and dynamically monitor operational states. 
By replicating physical spaces and digital interactions, they create a comprehensive framework for identifying threats that 
span both domains. Deep learning algorithms, including CNNs and RNNs, analyze complex data from sensors, network 
traffic, and video feeds to detect subtle anomalies, such as suspicious access attempts or unusual device behavior. 
Simultaneously, CV systems enable real-time visual surveillance through advanced object detection, facial recognition, and 
behavioral analysis, allowing for the identification of unauthorized individuals and suspicious activities. By feeding these 
visual insights into the digital twin, the system enhances situational awareness and correlates data across multiple sources. 
For example, if anomaly detection flags an unusual network login, CV can verify it by confirming the presence of an 
unauthorized person in the physical location, allowing the digital twin to orchestrate early warnings and rapid responses in 
real-time [175-177]. 

4.3.7. Network security enhancement with visual data analysis 

In smart education environments, securing network infrastructure against sophisticated cyber threats is crucial due to the 
growing number of connected devices and sensitive data. By integrating DL and CV techniques, institutions can enhance 
security through real-time monitoring, anomaly detection, and proactive threat mitigation using visual data from cameras 
and IoT sensors distributed across their facilities. CNNs process this visual input to identify unusual behaviors or 
unauthorized access, such as detecting unauthorized personnel in restricted areas or suspicious tampering with network 
devices. Combining these visual insights with network traffic analysis through multimodal data fusion enables 
comprehensive situational awareness, allowing DL models to identify anomalies such as unusual data flows, unauthorized 
connections, or potential DDoS attacks. This fusion of physical and digital threat detection enables faster and more precise 
responses. Additionally, analyzing temporal visual data sequences helps predict emerging threats by tracking subtle changes 
over time, thereby preventing advanced persistent threats and insider attacks in educational institutions [178][179]. 

4.3.8. Emotion recognition for mental health and security monitoring 

Emotion recognition, driven by the combined power of DL and CV, supports mental health and enhances security monitoring 
in smart education environments. Advanced algorithms analyze facial expressions, micro-expressions, voice intonations, and 
physiological signals captured by cameras and sensors embedded in schools. Deep learning models, especially CNNs and 
RNNs, train on large, annotated datasets to detect subtle emotional cues such as stress, anxiety, frustration, or distress from 
real-time video streams. Computer vision techniques, such as facial landmark detection, action unit recognition, and 
spatiotemporal analysis, precisely identify nuanced emotions across diverse student populations, taking into account factors 
like age, ethnicity, and environmental influences. By integrating visual data with audio and physiological inputs, these 
systems achieve greater accuracy and robustness. Continuous emotion recognition allows educators and counselors to detect 
early signs of emotional distress or mental health issues, providing actionable insights for timely intervention and 
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personalized support that promote student well-being and reduce stigma through unobtrusive monitoring. Anonymized 
aggregated data help shape institutional policies that foster healthier educational ecosystems. Beyond mental health, emotion 
recognition enhances cybersecurity and physical safety by detecting emotional signals associated with aggression, fear, or 
suspicious behavior, alerting security personnel to potential threats such as bullying, violence, or unauthorized access. When 
combined with other CV security tools, such as person detection, weapon identification, and behavioral anomaly detection, 
it creates a multi-layered defense that enables rapid response and ensures a safer learning environment [180-182]. 

4.3.9. Crowd density estimation and emergency evacuation management 

Deep learning and CV enhance intelligent cybersecurity in smart educational environments by enabling real-time crowd 
density estimation and emergency evacuation management. Utilizing advanced CNNs and transformer-based architectures, 
these systems analyze surveillance video feeds to accurately detect, track, and count individuals, even in crowded spaces 
such as hallways and auditoriums. By continuously analyzing spatial-temporal movement patterns, they identify abnormal 
gatherings, predict crowd flows, and pinpoint bottlenecks, allowing schools to optimize occupancy and traffic flow. In 
emergencies such as fires or threats, AI-powered models dynamically assess exit accessibility and congestion, guiding 
occupants through digital signage or mobile alerts. When integrated with digital twin simulations of school infrastructure, 
these systems test various threat scenarios to develop and refine evacuation plans. This combination not only boosts 
situational awareness for security teams but also enables autonomous, rapid, and coordinated evacuations, thereby 
strengthening the resilience of smart educational institutions against physical and cybersecurity risks [183-186]. 

4.3.10. Enhanced data privacy through on-device AI processing 

In smart education, protecting sensitive personal, behavioral, and biometric data is essential, especially given the advanced 
surveillance and monitoring technologies in use. By integrating DL and CV with on-device AI processing—where 
algorithms run directly on local edge devices, such as smart cameras and sensors, instead of sending raw data to centralized 
servers—educational institutions can enhance cybersecurity while safeguarding privacy. This approach minimizes data 
exposure by transmitting only critical metadata, ensures compliance with regulations such as GDPR and FERPA by limiting 
the storage and transmission of personally identifiable information, and preserves privacy in real time through the automatic 
redaction or anonymization of sensitive details before the data leaves the device. Additionally, on-device processing reduces 
latency, speeds up threat detection, and strengthens security by eliminating vulnerabilities during data transfer. Modern edge 
devices equipped with AI accelerators efficiently run CNNs for detecting persons, weapons, or abnormal behaviors, enabling 
continuous, privacy-conscious monitoring and proactive threat mitigation. Ultimately, deploying on-device AI processing in 
smart education strikes a balance between technological innovation and ethical data protection, thereby building trust and 
meeting regulatory demands without compromising the confidentiality of students and staff [187-189]. 

4.4. Real-World Scenarios and Practical Implementations of DL and CV in Enhancing Cybersecurity in 

Smart Education 

This section showcases practical examples and real-world applications where DL and CV protect smart educational 
environments by securing the confidentiality, integrity, and availability of essential educational data and systems. 

4.4.1. Real-time surveillance for campus security 

Ali et al. [88] present an advanced AI-powered surveillance system specifically designed for smart campuses. Their solution 
integrates CV-enabled smart CCTV cameras equipped with object detection models, such as YOLOv5, to detect 
unauthorized intrusions and suspicious behaviors, thereby preventing physical security breaches. By combining DL and 
sensor fusion, the system automates surveillance tasks, identifies threats, and issues real-time alerts, all while addressing 
privacy concerns and ensuring interoperability within the campus infrastructure. 

4.4.2. Biometric-based authentication 

Zhang et al. [190] present a biometric authentication system that secures access within a smart campus by leveraging DL to 
enhance accuracy, robustness, and user convenience. Their system employs physiological biometrics, such as facial and iris 
recognition, alongside behavioral traits like gait or typing patterns to manage entry to campus facilities. By integrating DL-
based facial recognition and iris scanning into smart classrooms, they minimize the risks associated with password-based 
authentication and identity fraud. Their findings demonstrate strong authentication performance under real-world campus 
conditions while addressing challenges related to privacy, environmental variability, and practical deployment.  

4.4.3. Anomaly detection in network traffic 

Chen and Wang [191] investigate how deep-learning techniques, particularly LSTM, 1D-CNN, and autoencoders, can 
effectively detect anomalies in campus-wide educational networks. They develop a deep-learning-based system designed to 
identify intrusions, suspicious activities, and misuse by applying CNNs and RNNs to continuously monitor and analyze large 
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data streams. This approach enables the system to recognize abnormal patterns that signal potential security breaches within 
educational environments. 

4.4.4. Behavioral biometrics for continuous authentication 

Hossain and Roy [192] present a cutting-edge continuous authentication framework designed specifically for smart education 
platforms, which leverages behavioral biometrics and DL to detect unauthorized access in real time. Their work adapts and 
validates these methods for online classrooms and digital campuses, demonstrating their effectiveness in realistic settings 
and analyzing the practical trade-offs of implementation. By continuously verifying users through immersive behavioral 
patterns, such as keystroke dynamics and gait recognition, rather than relying on single-point logins, the framework prevents 
session takeover and unauthorized access throughout digital learning sessions, thereby strengthening the security of smart 
learning environments. 

4.4.5. Deepfake detection 

Rahman et al. [193] propose a hybrid deep-learning system that combines visual and audio analysis over time to detect 
deepfakes in educational media. Their method achieved strong benchmark results and offers practical benefits for enhancing 
cybersecurity in learning platforms. By addressing the growing threat posed by GANs, which have made deepfake creation 
more sophisticated, their system helps maintain authenticity and protect smart learning environments. Recent deep-learning 
models play a crucial role in identifying forged video and audio content that could otherwise enable the impersonation of 
students or staff. 

4.4.6. Phishing attack mitigation 

Patel and Gupta [194] present PhishNet, a specialized deep-learning framework designed to detect phishing emails targeting 
educational institutions. It tackles threats such as spoofed administrative notices, fake scholarship offers, and credential theft 
through impersonated campus services. By combining natural language processing models with CNNs, PhishNet analyzes 
email content for suspicious language and uses vision-based algorithms to identify malicious attachments or counterfeit 
institutional logos. This targeted approach integrates rich semantic features and advanced hybrid deep-learning techniques, 
delivering a robust defense that outperforms traditional detectors. Overall, PhishNet provides a strong foundation for securing 
campus email systems. 

4.4.7. Privacy-preserving smart cameras 

Nguyen et al. [195] propose a novel framework for privacy-aware, edge-based AI analytics designed explicitly for smart 
classrooms. Their system processes video data locally on edge devices, safeguarding students’ biometric and behavioral 
information while providing actionable insights such as attention detection and behavior monitoring. By employing 
lightweight DL models optimized for resource-constrained hardware, the framework delivers scalable, low-latency analytics 
that do not rely on external cloud processing. Although this approach enhances privacy and reduces data transfer, it must 
overcome common challenges in edge computing, including hardware limitations, model accuracy issues, and system 
maintenance concerns.  

4.4.8. Access control in IoT-enabled classrooms 

Lee et al. [196] present a CV and DL system designed to control access in IoT-enabled smart classrooms. Their system 
authenticates students and staff, automates attendance tracking, and secures room entry by using intelligent visual analysis. 
They describe how face recognition and anomaly detection work together to verify authorized users and detect unusual 
behavior, thereby improving security and convenience compared to traditional badge-based systems. It also examines edge-
based inference techniques and presents real-world deployment results, addressing key considerations such as accuracy, 
privacy, and hardware constraints. Additionally, the proposed system can regulate access to restricted areas or sensitive 
laboratory equipment by verifying users through face recognition and pose estimation. 

4.4.9. Adversarial attack defense 

Singh et al. [197] developed a DL and CV-based system to detect and prevent online exam malpractice, including cheating, 
impersonation, and unauthorized assistance, thereby strengthening academic integrity in remote assessments. They 
implemented robust DL models capable of resisting adversarial inputs, ensuring that manipulated images or videos cannot 
deceive facial recognition or object detection tools used in educational contexts. By applying advanced AI techniques, their 
system enhances the integrity and fairness of remote exams, effectively overcoming the limitations of conventional 
proctoring methods. 
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5. CHALLENGES AND LIMITATIONS  

Deep learning and CV hold immense promise for strengthening cybersecurity in smart education environments, but their 
practical implementation faces notable challenges and limitations. Below are brief descriptions of the key challenges and 
constraints that hinder the optimal implementation of DL and CV in enhancing cybersecurity in smart education. 

5.1. Data privacy and confidentiality 

The integration of DL and CV into smart education systems presents significant challenges for data privacy and 
confidentiality, given the extensive and sensitive nature of the data required for training and deploying these technologies. 
Smart classrooms often rely on continuous video surveillance and real-time analytics, capturing students’ facial images, 
biometric identifiers, and behavioral patterns, which raises concerns about unauthorized data collection and misuse, 
especially when informed consent, particularly for minors, is insufficiently addressed. Storing and transmitting high-
resolution images and videos increases the risk of data breaches and unauthorized access, and even robust encryption cannot 
entirely prevent adversarial attacks or insider threats. Sharing datasets across institutions or storing them in centralized cloud 
services further exposes this data to cyber threats and complicates compliance with privacy laws, such as GDPR, COPPA, 
and FERPA. Moreover, attackers can exploit trained models through inversion or membership inference attacks to extract 
sensitive information. This risk is amplified by the smaller, context-specific datasets typical in educational settings, where 
anonymization can degrade model performance. Deep learning models may also perpetuate biases in training data, resulting 
in unfair or discriminatory outcomes that compromise both privacy and the integrity of the educational system. Therefore, 
balancing the demand for large, high-quality datasets with the imperative to protect student privacy remains a critical and 
unresolved challenge in smart education [198]. 

5.2. Limited labeled data for training 

A major challenge in applying DL and CV to cybersecurity in smart education environments is the lack of sufficiently labeled 
datasets. Deep learning models for tasks such as anomaly detection, facial recognition, and suspicious activity monitoring 
rely on large volumes of high-quality, annotated data to learn robust, generalizable patterns. However, collecting such data 
in educational settings raises practical and ethical concerns, as it often involves recording sensitive information, such as 
student identities, behavior patterns, and access logs, which are limited by privacy regulations and institutional policies. 
Furthermore, cyber-attacks and security breaches are infrequent compared to routine activities, creating highly imbalanced 
datasets where malicious instances are scarce. This imbalance hampers effective model training and increases the likelihood 
of false positives and false negatives. Manual labeling demands significant human effort and domain expertise to distinguish 
subtle threats from normal behavior, but many institutions lack the resources and skilled personnel to perform this at scale. 
The limited availability of labeled data not only restricts initial model training but also hinders continuous retraining, which 
is necessary to counter evolving threats, thereby risking model obsolescence. Additionally, data collected in educational 
environments often suffers from missing values, inconsistencies, insufficient metadata, and a lack of real-time updates, 
further degrading model performance. Meeting the high data requirements for DL remains a significant hurdle, as manual 
labeling remains labor-intensive and time-consuming [199][200]. 

5.3. High computational requirements 

One major challenge in utilizing DL and CV to enhance cybersecurity in smart education environments is their high 
computational demands. Deep learning models, such as CNNs, RNNs, and transformer-based architectures, consume a 
significant amount of processing power and memory during both training and inference. In smart education settings, these 
models handle tasks such as real-time video monitoring to detect unauthorized access, analyzing student behavior for 
anomalies, and identifying malicious content on digital platforms. Processing high-resolution video streams or large volumes 
of multimodal data in real-time requires powerful GPUs or specialized hardware, such as Tensor Processing Units, which 
many institutions, especially in low-resource regions, cannot afford or maintain. Training robust models also demands vast 
datasets and repeated iterations, which necessitate distributed computing or cloud-based solutions, adding costs and 
introducing potential security and privacy concerns. Deploying these models on edge devices, such as campus cameras or 
student devices, further complicates matters due to limited processing power and energy constraints, requiring model 
compression, lightweight architectures, or edge-cloud collaboration. These technical and financial burdens increase latency 
and operational complexity, thereby undermining the timely detection and mitigation of security threats and posing a 
persistent barrier to the widespread adoption of smart education systems [51][201]. 

5.4. Model interpretability and explainability 

Deep learning and CV models, especially CNNs used for facial recognition, anomaly detection, and real-time threat 
monitoring, often operate as “black boxes,” limiting their interpretability and explainability in smart education cybersecurity. 
This lack of transparency undermines trust because administrators, educators, students, and parents need clear justifications 
for automated decisions, such as flagging malicious student behavior or blocking access to resources. It also complicates 
compliance with data protection laws, such as the EU’s GDPR, which requires explainable automated decisions and raises 
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risks of bias and legal issues in AI-driven surveillance or proctoring systems. Moreover, the inability to interpret model 
decisions hinders security experts from diagnosing errors, refining training data, and adapting defenses in response to 
evolving threats and behaviors. To ensure trust, legal compliance, effective incident response, and continuous improvement, 
smart education environments must prioritize XAI models over relying on opaque DL systems [51][201]. 

5.5. Evolving threat landscape 

Enhancing cybersecurity in smart education environments using DL and CV presents a critical challenge due to the rapidly 
evolving threat landscape. As smart education systems increasingly depend on interconnected devices, real-time data 
exchange, and pervasive connectivity to deliver personalized learning, they also expand their attack surfaces, exposing 
sensitive data and infrastructure to sophisticated cyberattacks. Attackers continuously develop novel techniques, such as 
adversarial, evasion, and poisoning attacks, that manipulate DL models and CV systems used for student authentication, 
surveillance, and behavior analysis, compromising their reliability. The widespread adoption of BYOD policies and remote 
access further complicates threat detection, as diverse personal devices with varying security levels create entry points for 
malware and unauthorized access. Additionally, zero-day vulnerabilities and advanced persistent threats exploit weaknesses 
in legacy systems, which can limit user cybersecurity awareness and enable infiltrations of networks and disruptions to 
services [201]. 

5.6. Integration with legacy systems 

Deploying DL and CV solutions to enhance cybersecurity in smart education environments presents a critical challenge, as 
they are often integrated with existing legacy systems. Many educational institutions rely on outdated IT infrastructures and 
software architectures that cannot support the computational demands and real-time data processing of modern AI-based 
security frameworks. Legacy systems often feature limited processing power, rigid data formats, and proprietary protocols, 
which hinder interoperability with contemporary DL models and CV pipelines. For example, incorporating real-time video 
surveillance powered by CV into older networks can strain bandwidth and storage, resulting in latency and reduced system 
reliability. Additionally, legacy systems often lack standardized interfaces, such as APIs, which prevents seamless data 
exchange with student information systems, LMS, and administrative databases. This fragmentation creates data silos that 
undermine the training and deployment of DL algorithms, which require large, diverse, high-quality datasets to detect 
anomalies and cyber threats effectively. Retrofitting these systems to comply with modern cybersecurity protocols, such as 
secure authentication and encrypted communication, often demands costly modifications or complete infrastructure 
replacement, which many institutions cannot afford. Overall, managing the coexistence of legacy infrastructure and cutting-
edge AI technologies remains a significant barrier to realizing robust, AI-driven cybersecurity in smart education. 

5.7. Real-time processing constraints 

A significant challenge in enhancing cybersecurity in smart education environments using DL and CV lies in meeting the 
stringent demands for real-time or near-real-time processing. These systems continuously monitor activities, including video 
surveillance, facial recognition for authentication, and anomaly detection in user behavior, to detect and respond to security 
threats promptly. However, DL models for image and video analysis involve millions of parameters and intensive 
computations, requiring powerful hardware like GPUs or specialized edge AI chips, which many educational settings cannot 
afford. Furthermore, security applications require minimal latency to avoid missed or delayed responses, yet edge devices 
deployed in classrooms or exam halls often have limited computational power, memory, and energy. Streaming extensive 
video data to central servers also strains network bandwidth and introduces latency, especially in areas with unstable Internet 
connectivity. Balancing model complexity and speed complicates this further, as simpler models run faster but risk lower 
accuracy, which can lead to increased false alarms and undermine trust. Consequently, deploying accurate, low-latency DL 
solutions for real-time cybersecurity in resource-constrained smart education environments remains a significant technical 
hurdle. 

5.8. Adversarial Attacks on AI Models 

Integrating DL and CV into smart education environments faces a major challenge from adversarial attacks, where attackers 
deliberately manipulate input data to deceive models into producing incorrect results without noticeable changes to humans. 
These attacks pose a threat to the integrity, reliability, and security of systems that support personalized learning, student 
authentication, proctoring, and performance assessment. Although CNNs excel at facial recognition, gesture detection, and 
behavioral monitoring, their high-dimensional, nonlinear structures make them vulnerable to subtle perturbations, such as 
altering a student’s face image to bypass identity verification or fool plagiarism detectors and automated grading tools. The 
black-box nature of many deployed models complicates real-time detection and interpretation of such attacks, while 
adversarial techniques evolve faster than defenses. Although strategies such as adversarial training, input preprocessing, and 
model regularization can mitigate risks, they often increase computational costs and compromise accuracy on clean data, 
leaving AI-based security measures vulnerable to new attack vectors through carefully crafted adversarial inputs [201]. 
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5.9. Ethical and social implications 

Integrating DL and CV to enhance cybersecurity in smart education environments presents significant ethical and social 
challenges. These technologies enhance threat detection, access control, and monitoring, but also raise concerns about 
privacy, data ownership, consent, and potential misuse. Computer vision applications, such as automated surveillance, facial 
recognition, and behavior analysis, continuously collect and process sensitive visual data from students, staff, and visitors 
across classrooms, hallways, and online platforms, potentially infringing on privacy and creating a climate of constant 
surveillance that undermines students’ freedom of expression and sense of security. Additionally, DL algorithms can 
perpetuate bias and unfairness when trained on non-representative data, resulting in unequal treatment across demographic 
groups and exacerbating social inequalities in education. Often, students and guardians lack clear information or control over 
data collection, which limits informed consent and weakens trust between stakeholders, potentially hindering technology 
adoption and leading to legal issues under regulations such as GDPR and COPPA. Moreover, the misuse of collected data 
through breaches or the repurposing of surveillance for intrusive monitoring poses critical risks to security, personal 
freedoms, and civil liberties. Excessive monitoring risks fostering distrust and compromising student autonomy and well-
being, making it essential to strike a balance between security objectives and robust ethical safeguards. 

5.10. Cost and scalability 

Integrating DL and CV into smart education systems to enhance cybersecurity poses substantial financial and scalability 
challenges. Educational institutions must invest heavily in high-performance GPUs or specialized hardware accelerators to 
develop and deploy robust models while also managing the costs of collecting and annotating large, diverse datasets required 
for accurate training. Installing and maintaining high-resolution cameras and edge devices across physical and virtual 
learning environments adds further expenses. As these systems expand to serve more students, campuses, and online 
platforms, they require additional hardware and adaptive model architectures to handle increasing data streams in real time 
without sacrificing performance. Institutions must continuously update and retrain models to counter evolving cyber threats, 
demanding ongoing resources and specialized expertise that may not always be available. Consequently, deploying DL and 
CV solutions at scale across diverse educational settings presents a complex financial and logistical burden, requiring careful 
management to maintain effective, secure, and cost-efficient cybersecurity protections [67]. 

5.11. Model robustness and generalization 

Applying DL and CV to enhance cybersecurity in smart education environments faces significant challenges in ensuring 
model robustness and generalization. Robustness demands that models maintain reliable performance despite unexpected, 
noisy, or adversarial inputs, while generalization requires them to effectively handle unseen data that differs subtly from 
their training sets. Smart education systems generate heterogeneous, dynamic data streams, such as real-time video 
surveillance, biometric authentication, and behavioral logs, that are prone to noise, variation, and deliberate attacks. 
Consequently, models for tasks such as anomaly detection, identity verification, and behavioral monitoring must be robust 
against input perturbations and be able to adapt to evolving threats. However, many models overfit to curated training data, 
resulting in poor performance under real-world conditions. For example, intrusion detection systems may miss novel attacks, 
and facial recognition systems may fail under poor lighting conditions or in the presence of spoofing attempts. Adversarial 
attacks further undermine robustness by introducing subtle, human-imperceptible perturbations that mislead models and 
bypass security measures. The diversity of devices and environments, ranging from high-resolution classroom cameras to 
low-quality remote learner devices, complicates the development of universally robust models capable of handling variations 
in student behavior, curricula, and assessment methods while minimizing bias. Additionally, challenges such as data scarcity, 
domain shifts, and biased datasets threaten the accuracy and fairness of models, ultimately hindering the effectiveness of 
cybersecurity in smart education [202]. 

5.12. Scalability challenge 

Scalability poses a challenge when deploying DL and CV solutions to enhance cybersecurity in smart education 
environments. As educational institutions increasingly integrate IoT-enabled classrooms, intelligent surveillance, and 
automated identity verification, they must process vast and diverse data streams from multiple campuses in real-time. These 
DL models require substantial computational power, often unavailable in resource-limited settings. They must adapt 
continuously to varying sensor types, image qualities, and network conditions through frequent retraining, which increases 
operational costs. Moreover, maintaining low-latency inference across concurrent video and sensor feeds is crucial for timely 
threat detection, but it becomes increasingly complex as the system scales. Additionally, scaling these solutions requires 
careful management of data privacy and compliance with regulations such as GDPR, as distributed deployments involve 
sensitive information shared across nodes. 
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6. FUTURE RESEARCH DIRECTIONS 

As smart education systems increasingly leverage DL and CV to enhance cybersecurity, researchers can explore new 
directions to address unresolved challenges and expand existing capabilities. Below are detailed future research directions 
that can drive cybersecurity in smart education through the use of DL and CV. 

6.1. Development of Lightweight DL Models 

Future research should prioritize designing and deploying lightweight DL models tailored for cybersecurity in smart 
education environments. As smart education systems integrate more interconnected devices and edge-based learning 
platforms, they face challenges such as limited computational power, memory, and energy resources. Traditional DL models, 
though accurate, often require substantial processing and storage, which can impede real-time threat detection and increase 
latency on resource-constrained devices. To overcome these limitations, researchers should develop compact neural network 
architectures and apply model compression techniques, such as pruning, quantization, and knowledge distillation, to reduce 
computational demands while maintaining high detection accuracy. Deploying these lightweight models on edge devices, 
such as smart cameras, wearable devices for students, and IoT sensors, enables real-time monitoring and anomaly detection 
locally, thereby minimizing reliance on continuous cloud communication. This decentralized approach not only lowers 
network bandwidth usage but also strengthens data privacy by keeping sensitive information on the device. Researchers 
should leverage automated neural architecture search and meta-learning to design models that adapt to varying device 
capabilities and evolving cybersecurity threats. Combining these models with federated learning can further enhance system 
resilience by enabling collaborative learning across institutions without requiring the sharing of raw data. Advancing 
lightweight DL solutions will support scalable, efficient, and privacy-preserving cybersecurity in smart education, ensuring 
robust protection for students, educators, and infrastructure in increasingly connected learning environments. 

6.2. Integration with Federated Learning 

Integrating federated learning into DL and CV frameworks offers a promising direction for strengthening cybersecurity in 
smart education environments. Federated learning enables multiple decentralized devices or institutions to collaboratively 
train a shared global model without exchanging raw data, directly addressing privacy and security concerns associated with 
sensitive educational information such as student records, behavioral patterns, and surveillance feeds. By keeping data local 
and transmitting only model updates or gradients, federated learning reduces the risks associated with centralized data storage 
and transmission, minimizes the attack surface, and supports compliance with data protection regulations such as GDPR and 
FERPA. It also enhances model generalizability and robustness across diverse educational contexts, accommodating the 
heterogeneity of smart classrooms, online platforms, and campus security systems that operate under varying hardware, 
network, and privacy constraints. Combining federated learning with secure aggregation techniques and differential privacy 
further safeguards against adversarial attacks, model inversion, and gradient leakage. Future research should prioritize the 
development of efficient federated learning protocols tailored to the resource limitations of edge cameras, mobile devices, 
and IoT sensors used in smart education, with a focus on lightweight models, communication-efficient updates, and resilient 
aggregation mechanisms. Additionally, exploring the synergy between federated learning and advanced CV tasks, such as 
real-time anomaly detection, facial recognition, and behavior analysis, can enable proactive, adaptive cybersecurity 
measures. 

6.3. Context-Aware Anomaly Detection 

A promising direction for future research is the development of context-aware anomaly detection frameworks designed 
explicitly for smart education environments. Unlike traditional systems that flag anomalies without considering the dynamic 
contexts of educational activities, context-aware models can significantly reduce false positives and missed threats in diverse 
settings with various users, devices, and applications. Smart education involves real-time interactions among students, 
educators, intelligent tutoring systems, IoT devices, and cloud-based platforms, each generating context-dependent data 
shaped by user roles, lesson schedules, pedagogical goals, locations, and device status. By integrating contextual information, 
such as temporal patterns, user profiles, and situational cues, into anomaly detection, researchers can enhance accuracy and 
responsiveness. Hybrid approaches that combine DL techniques, such as RNNs or GNNs, with contextual embedding can 
capture temporal dependencies and relational structures within educational data. Incorporating CV to interpret visual 
contexts, such as classroom activities or user gestures, can further strengthen situational awareness. Researchers must also 
address challenges related to data privacy, real-time processing, and scalability by employing privacy-preserving learning 
methods, edge computing, and lightweight model architectures. Advancing these context-aware mechanisms will enable 
adaptive, intelligent security solutions that keep pace with the evolving demands of smart education, fostering a safer and 
more resilient digital learning ecosystem capable of detecting sophisticated threats, such as context-specific phishing or 
unauthorized access. 
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6.4. Adversarial Robustness and Explainability 

Despite their promising role in enhancing cybersecurity within smart education systems, DL, and CV models remain 
inherently susceptible to adversarial attacks and often lack interpretability. Malicious actors can exploit subtle input 
manipulations to bypass authentication, tamper with surveillance, or compromise content moderation undetected. To address 
these risks, researchers should focus on developing robust architectures that withstand adversarial inputs by implementing 
defense mechanisms such as adversarial training, input preprocessing, certified defenses, robust optimization, and 
uncertainty estimation. Tailoring and benchmarking these defenses using datasets that reflect student behaviors, classroom 
settings, and online learning platforms will help adapt solutions to the specific threats faced in educational contexts. Equally 
important, researchers should advance XAI techniques that make model predictions transparent and understandable to 
educators, administrators, and students without sacrificing performance. Combining post-hoc explanations, inherently 
interpretable designs, and user-centered explainability will foster trust, enhance accountability, and support the adoption of 
ethical, responsible AI in smart education environments. 

6.5. Real-Time Visual Surveillance for Insider Threats 

A key direction for future research to strengthen cybersecurity in smart education environments is the development of real-
time visual surveillance systems that harness advanced DL and CV techniques to detect and mitigate insider threats. Unlike 
external attacks, insider threats originate from authorized users who exploit legitimate access, making them challenging to 
detect with traditional security measures. By embedding real-time video analytics into smart campus infrastructure, 
institutions can continuously monitor user behaviors and physical interactions with critical systems, adding a vital layer of 
protection. Cutting-edge object detection, facial recognition, and human action recognition models can help identify 
unauthorized access, suspicious movements, or behavioral anomalies that signal potential misuse. Researchers should design 
lightweight yet robust DL models capable of processing high-resolution video streams in real-time while maintaining low 
computational demands for scalability across multiple surveillance nodes. They must also address privacy concerns by 
ensuring compliance with data protection laws and ethical standards through the use of privacy-preserving analytics, 
federated learning, and anonymization techniques. Combining visual surveillance with multimodal data, such as biometric 
signals, access logs, and environmental context, can further enhance the accuracy of detection. Developing adaptive threat 
models that learn from contextual cues and historical patterns will improve the system’s ability to distinguish between benign 
anomalies and genuine threats. Expanding these CV applications to physical learning spaces, utilizing facial recognition, 
gait analysis, or behavior monitoring in smart classrooms and labs, can further safeguard sensitive resources and uphold trust 
within the academic community. 

6.6. Privacy-Preserving CV Techniques 

As smart education systems increasingly utilize DL and CV to enhance cybersecurity through identity verification, behavior 
monitoring, and anomaly detection, they inevitably collect sensitive visual data, including facial images, gestures, and 
environmental contexts. This extensive reliance on visual surveillance and biometric cues raises serious privacy concerns 
that can erode user trust and challenge regulatory compliance. To address these issues, future research should focus on 
developing robust privacy-preserving CV techniques tailored for smart educational settings. Promising solutions include 
federated learning, which enables collaborative training of visual models across edge devices without centralizing raw 
images, and differential privacy, which injects calibrated noise into features or outputs to protect individual identities. 
Cryptographic methods, such as secure multi-party computation and homomorphic encryption, can further ensure that 
encrypted visual data remains private during processing, supporting secure facial recognition and activity monitoring without 
exposing raw images. Adversarial obfuscation methods, such as face de-identification, silhouette extraction, and privacy 
filters, can also obscure identifiable features in real time, allowing for context-aware monitoring while upholding privacy. 
Researchers should explore the balance between computational demands and privacy guarantees, design lightweight, 
privacy-enhanced models suitable for resource-constrained edge devices, and establish frameworks to assess and mitigate 
privacy risks. Advancing these privacy-preserving vision techniques is crucial for maintaining trust, ensuring regulatory 
compliance, and promoting ethical surveillance in smart education, which demands interdisciplinary collaboration among 
machine learning experts, cryptographers, and educational policymakers. 

6.7. Cross-Domain Transfer Learning 

As smart education systems increasingly integrate diverse digital platforms, they face complex cybersecurity challenges due 
to the variety of data types, devices, and user behaviors involved. Deep learning models often underperform when applied 
to different but related domains due to domain shift; however, cross-domain transfer learning offers a promising solution by 
enabling models to leverage knowledge from one domain and adapt it effectively to another. In smart education, this 
approach can enhance the robustness and generalizability of DL and CV techniques. For instance, models trained to detect 
phishing attacks or unauthorized access on one platform can be transferred and fine-tuned to identify similar threats in other 
contexts, even with limited labeled data, reducing the need for costly retraining and large-scale data annotation. By 
transferring representations of normal and abnormal behaviors across different user groups, devices, or network conditions, 
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cross-domain transfer learning can also improve anomaly detection and uncover subtle or evolving threats that traditional 
methods might miss. Future research should develop novel transfer learning architectures and domain adaptation strategies 
that minimize distribution discrepancies between domains. It should also explore multi-source transfer learning to integrate 
knowledge from various educational contexts and incorporate explainability to build trust and transparency in these models. 
Advancing these methodologies will help create adaptive, scalable, and effective cybersecurity solutions that meet the 
dynamic needs of smart education, enabling institutions to secure diverse digital environments with minimal labeled data 
and efficient fine-tuning techniques. 

6.8. Integration With Iot Security Frameworks 

As smart education environments increasingly rely on interconnected devices, such as smartboards, IoT-enabled sensors, 
cameras, wearables, and networked educational tools, their cybersecurity landscape becomes more complex and demanding. 
To address this, future research should integrate DL and CV techniques with existing and emerging IoT security frameworks 
to develop robust, adaptive defenses tailored for smart educational ecosystems. The diverse IoT devices in these settings 
constantly generate vast data streams, enabling seamless interactions among students, educators, and content. However, they 
also expand the attack surface, exposing systems to threats such as unauthorized access, data breaches, device tampering, 
and privacy violations. Traditional IoT security frameworks often struggle with scalability, real-time detection, and adapting 
to evolving threats. The heterogeneity and limited resources of devices further hinder conventional approaches. Researchers 
should, therefore, focus on DL-enhanced anomaly detection to monitor network traffic and behavior in real time, apply CV 
for secure authentication and physical security, deploy lightweight models on edge devices for timely threat response, and 
develop context-aware security policies that adapt dynamically to specific educational scenarios. Additionally, they should 
incorporate privacy-preserving techniques, such as federated learning, and ensure that new solutions align with existing IoT 
security standards to guarantee interoperability across diverse educational technologies. By embedding DL and CV into IoT 
security protocols, smart education systems can become more resilient, proactive, scalable, and privacy-conscious, ultimately 
safeguarding trust, safety, and continuity in digital learning spaces. 

6.9. Automated Threat Intelligence and Response Systems 

As smart education environments increasingly integrate connected devices, cloud platforms, and AI-driven tools, they face 
a more complex and vulnerable cybersecurity landscape. Automated Threat Intelligence and Response Systems (ATIRS) 
provide a vital solution by leveraging DL and CV to detect, analyze, and mitigate cyberattacks in real-time. Future research 
should focus on developing advanced DL models that process diverse data sources, such as network traffic, user behavior, 
and system logs, to identify emerging threats—including zero-day vulnerabilities and polymorphic malware—that traditional 
systems often miss. Additionally, applying CV techniques to visual data from cameras and IoT devices can enable automated 
detection of anomalous behaviors or unauthorized access, triggering immediate security responses without human 
intervention. Researchers must also design ATIRS to execute automated, context-aware mitigation actions, such as isolating 
compromised devices and blocking malicious traffic, while optimizing strategies through reinforcement learning to balance 
security with operational continuity. Establishing secure, privacy-compliant frameworks for federated threat intelligence 
sharing among educational institutions will enhance collective defense without compromising sensitive information. Ethical 
AI frameworks are crucial to ensure that these systems respect privacy, avoid bias, and maintain transparency, thereby 
fostering trust among educators, students, and cybersecurity staff. Ultimately, scalable, hybrid cloud-edge architectures 
tailored to the diverse needs and resource constraints of educational institutions will enable efficient deployment and rapid 
response to threats. By integrating these elements, ATIRS can provide autonomous, adaptive cybersecurity solutions that 
reduce manual intervention, deliver real-time alerts, and dynamically update defenses to protect smart education 
environments proactively. 

6.10. Comprehensive Ethical and Regulatory Frameworks 

As smart education increasingly integrates advanced technologies like DL and CV, future research must develop 
comprehensive ethical and regulatory frameworks to address the unique challenges posed by AI-driven cybersecurity 
solutions in educational settings. Researchers should establish clear ethical guidelines that protect student privacy by 
minimizing data exposure, ensuring informed consent, promoting transparency in AI decision-making, and mitigating 
algorithmic biases to prevent discrimination. They must also clarify accountability for AI-related errors or breaches. Aligning 
these solutions with existing data protection laws, such as GDPR and FERPA, and establishing standardized protocols and 
certification processes will enhance regulatory compliance and foster trust among institutions, students, and parents. 
Effective frameworks require interdisciplinary collaboration among ethicists, legal experts, educators, technologists, and 
policymakers to ensure adaptability across diverse educational contexts. Moreover, research should design dynamic 
governance models that enable continuous monitoring and updating of standards, leveraging AI-driven auditing tools to 
detect risks and non-compliance in real-time. Finally, raising awareness and training stakeholders, including educators, 
administrators, and students, on ethical principles and data rights will promote responsible AI use and foster a culture of 
ethical cybersecurity. By proactively addressing these dimensions, future work can ensure that advances in AI-powered 
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cybersecurity not only strengthen system resilience but also uphold privacy, fairness, and accountability, ultimately creating 
safer, more trustworthy learning environments. 

6.11. Collaborative Systems 

Collaborative systems in cybersecurity strengthen joint research initiatives by uniting educational institutions, cybersecurity 
experts, and AI researchers to develop innovative security solutions. By establishing data-sharing and threat intelligence 
platforms, these systems enable institutions to exchange critical threat information and best practices, enhancing cooperation. 
Developing open-source security tools and frameworks further accelerates the adoption of AI-driven security measures. 
Additionally, cross-disciplinary training programs that combine cybersecurity expertise with AI knowledge help build a 
more skilled workforce. Implementing standardized security protocols across multiple educational institutions ensures 
consistent and effective cybersecurity practices. 

7. CONCLUSION 

This survey has thoroughly explored the critical role that DL and CV play in strengthening cybersecurity within smart 
education environments. As educational institutions increasingly adopt smart technologies and IoT-enabled systems, they 
face a more complex and evolving threat landscape. By integrating advanced DL algorithms, such as CNNs and RNNs, with 
CV techniques, institutions can implement robust, adaptive, and automated security measures tailored to the unique demands 
of smart education. 

These technologies significantly enhance threat detection accuracy, enable real-time monitoring, and support proactive 
defenses against threats such as unauthorized access, identity spoofing, and content manipulation. However, despite these 
promising capabilities, challenges persist. Data privacy concerns, limited model interpretability, high computational 
requirements, and the scarcity of domain-specific datasets remain pressing issues. Furthermore, the dynamic and diverse 
nature of smart education systems calls for scalable and flexible cybersecurity frameworks that can adapt to changing 
conditions. 

Future research must address these challenges by developing privacy-preserving approaches such as federated learning and 
differential privacy, improving model explainability, and strengthening resilience against adversarial attacks. Efforts should 
also focus on building trustworthy, explainable AI models that foster transparency and user confidence. Close collaboration 
among cybersecurity experts, educators, and AI researchers will be crucial in designing user-centric, privacy-conscious 
solutions that align with educational objectives. Ultimately, the continued advancement and integration of DL and CV will 
play a transformative role in protecting educational data, preserving system integrity, and creating secure digital learning 
environments that promote innovation and academic excellence. 
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