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A B S T R A C T  

One of the most important fruit crops in the world is citrus. However, some citrus diseases spread rapidly, 

which is why early detection at an accurate stage is important for timely intervention. YOLO-based 

object detection models, such as the latest YOLOv10, where small lesions are difficult to identify among 

noisy backgrounds, have recently been developed, yet their accuracy tends to degrade. Therefore, we 

proposed a citrus disease detection model by integrating the region of interest (ROI) for object 

segmentation with the YOLOv10 model, thus addressing the issues of low detection accuracy and slow 

inference time. The proposed model was trained on an annotated dataset of three major citrus pathologies: 

anthracnose, citrus canker, and leaf miner infestation. Results showed significant improvements in the 

performance of our proposed model, which incorporates the ROI mechanism into YOLOv10. 

Specifically, the ROI-YOLOv10 model achieved high mAP scores, reaching 0.99 and 0.985 during 

training and validation, respectively, and maintaining high generalization capabilities with a test mAP of 

0.984. Precision and recall metrics similarly underline the enhanced accuracy and robustness of ROI-

YOLOv10. Compared with previous YOLO-based studies, our model exhibits enhanced accuracy and 

faster inference times. The incorporation of ROI techniques into the YOLOv10 framework is a highly 

effective approach for improving agricultural productivity by facilitating early and precise detection of 

plant disease. 

 

 

1. INTRODUCTION 

Citrus is one of the major fruit crops globally, grown in more than 140 countries, with oranges accounting for more than 

half of world citrus production and being the most widely traded citrus fruit [1]. Citrus fruits are rich in vitamin C, proteins, 

and essential minerals, and they constitute a large proportion of global agricultural production. However, threats of diseases 

and pests that affect the quality and productivity of citrus fruits may result in substantial economic losses [2]. 

Numerous infections affect citrus plants, including cankers, melanoses, scabs, greening, and black spots. Among these, 

citrus canker is highly contagious, primarily damaging the leaves and fruit. According to reports on kinnow, approximately 

22% of the crop is lost, 25%–40% in sweet oranges, 15% in grapefruit, 10% in sweet limes, and 2% in lemons because of 

such a disease. Additionally, a substantial share of high-quality export-grade citrus fruits is often rejected due to disease 

symptoms or failure to meet stringent international quality standards, thus highlighting the need for early detection and 

intervention [3]. Accurate identification of citrus diseases is crucial to minimizing damage, reducing costs, and improving 

product quality [4]. 

Various citrus diseases, including citrus yellow shoot disease, have emerged as particularly severe threats, characterized 

by yellowing of shoots, leaf chlorosis, and gradual tree decline, affecting global crop quality and yield productivity losses 

[5]-[6]. Automated farming or smart farming is the newest data-driven paradigm of farming [7]. Thus, citrus diseases are 

diagnosed and classified by researchers who have developed automated techniques for such processes. Different 

methodologies are used in experiments, including citrus detection, image processing, preprocessing, and deep learning 

methods, for diagnosing plant diseases [8].  
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Deep learning models have demonstrated a strong ability to capture spatial hierarchies and contextual features in complex 

tasks such as disease detection, pattern recognition, and natural language processing. Their hierarchical feature extraction 

capabilities and scalability make them particularly effective in analyzing large and unstructured datasets [9]. 

Traditionally, expert assessment for diagnosing citrus diseases is time consuming and requires extensive knowledge of the 

relevant domain. However, enhancements in deep learning and computer vision have revolutionized disease classification 

and detection. Existing models face challenges despite their success due to environmental conditions and variations in 

symptoms that reduce the ability to detect citrus leaf diseases. Therefore, developing lightweight and highly accurate 

models for detection is necessary to improve adaptability and recognition accuracy [10]-[11].  

To achieve real-time detection a series of You Only Look Once (YOLO)  has become the best solution . which can identify 

the positions of objects and categories simultaneously through a unified processing step, by offering an efficient trade-off 

between computational speed and detection accuracy. The latest addition to the YOLO family, YOLOv10 was unveiled in 

May 2024, introducing additional advances in architecture over previous versions. Particularly, it jointly reduces the 

computational cost by minimizes the number of parameters without losing detection accuracy. Because of this 

optimizations, YOLOv10 is highly efficient and scalable, offering high performance in both resource-constrained edge 

devices and cloud-based systems . In agricultural applications YOLOv10 has a high potential specially in plant diseases 

detection , where monitoring of diseases needs precise localization of lesions in complex field [12].  

 

Image processing and segmentation are commonly used techniques to identify objects within images. Image segmentation 

is the process of keeping useful portions or areas, and this can include deleting certain image elements that are not important 

to the analysis of the original picture. The performance of image segmentation techniques is dependent on the features of 

the picture under consideration. One such technique is region of interest (ROI) pooling, where fixed-size feature maps for 

each region are selected from the original feature maps, speeding up computations significantly [13], [10]. 

 

The process of citrus leaf detection is a timely problem in current agricultural practice because citrus leaf diseases affect 

the production amount and product quality considerably. Images in orchards are highly complex and include overlapping 

leaves, branches, soil textures, and dynamic lighting conditions that present a real-world challenge. All these elements 

usually mask or distort visual symptoms of the disease. Despite recent improvements in deep learning, e.g., the current 

family of YOLOs, there are limitations to the direct use of object recognition in agricultural contexts as with citrus diseases 

and individuals such as YOLOv10. Particularly, some circumstances can affect the detection process, such as the size of 

diseased areas, irregular shape, or visual similarity to healthy ones. Moreover, inference speed is hampered by the network’s 

need to process whole raw images without prior filtering [14]. 

 

Through ROI segmentation, the model is set to concentrate on the most pertinent leaves surfaces to downplay the effects 

of the unnecessary background. This selective approach has a number of beneficial implications: It processes symptomatic 

areas better and returns them with increased accuracy. Moreover, it lowers false positive results and minimizes redundancy, 

thus increasing inference speed. In addition, the model is robust to environmental variations of orchard conditions due to 

improved ROI integration. This approach can be scaled up to be transferable to disease detection in crops other than citrus 

in the larger discipline of precision agriculture [15]. 

To address existing challenges in citrus disease detection, we introduced a citrus disease detection model that uses ROI to 

segment citrus disease and then applied YOLOv10 in object detection. The proposed approach effectively identifies 

infected citrus plants from field images, segmenting diseased and healthy leaves with the assistance of a plant pathologist. 

This study’s contributions include the following: 

- Citrus plant illness was detected using a combination of ROI segmentation and YOLOv10.  

- The proposed model was evaluated on a sizable dataset. 

The remainder of this paper is organized as follows: Section 2 presents the related work, while Section 3 provides a review 

of the YOLOv10 architecture. Section 4 outlines the proposed methodology, and Section 5 details the experimental results 

and discussion. Finally, Section 6 concludes the paper and outlines directions for future research.   
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2. RELATED WORK  

Plant disease detection has redefined by deep learning it enabled scalable, real-time, , and highly accurate diagnostic 

solutions through varied agricultural settings. Application of object detection and classification frameworks has been 

explored by numerous studies, particularly those use the YOLO architecture, to identify diseases in citrus crops under field 

conditions.  

Xin et al. [16] Collected 1,524 images at various time intervals, resolution, and field conditions, to detect citrus disease 

through a robust system. They integrated the object detection model YOLOv4 with EfficientNet as classification model, 

achieving 89.0% as classification accuracy and 87.2% as F1-score, that demonstrate hybrid deep learning efficiency in 

monitoring citrus diseases field. Building upon this foundation, Ali [17] enhanced data training diversity by applying 

mosaic scaling with techniques of image translation, to evaluate YOLOv5, YOLOv7, and YOLOv8 subsequently, YOLOv8 

showed better performance in versatility and precision, it success in terms of single and multiple disease detection through 

individual images. 

To improve detection of subtle disease symptoms, Wang et al. [18] produced LSD-YOLO, which enhances YOLOv8 

features to appear as convolutional block attention model. Including a small target tailored as a detection layer that can 

detect small lesion spots, aiming to improve sensitivity to infections in early stages. Similarly, Wu Xie [19] put traditional 

models like faster R-CNN in comparison with R-CNN that using modified YOLOv8. Although the variants of R-CNN can 

produce high accuracy, they demand high computational requirements making them unsuitable to be deployed in real-

world under orchard conditions. The combination of YOLOv8 model with multi-feature selection capabilities, built a good 

balance between inference speed and accuracy. 

Chen [20] developed YOLOv4 through a detection mechanism that contained four scales, with K-means clustering support 

for optimal anchor box sizing. The detection of diseases in multiresolution datasets enhanced through this adaption, and 

achieved higher performance over other contemporary systems, like YOLOv3, Detectron2, and SSD. 

Wu et al. [21] introduced SAW-YOLO, to detect small area citrus pest using multiscale object detection system. The system 

combines a backbone novel spatial pyramid model that can preserve fine-grained attributes, with deeper network layers. 

Moreover, the attention attribute fusion and distribution head augments the fusion of shallow and deep attributes, presenting 

accurate detection across different pest sizes. SAW-YOLO manage to achieve 90.3% accuracy for the newly updated IP-

CitrusPests13 dataset, that contains 13 citrus disease types, this result surpasses the baseline YO:Ov8 without a large 

increase in the size of the system. 

 

Jiang, Li, and Zhao [22] employed YOLOv4 integrated with unmanned aerial vehicle (UAV) imaging to detect 

Huanglongbing, a devastating citrus greening disease. By capturing aerial imagery and processing it through a YOLOv4-

based model, they achieved effective large-scale disease detection with high precision, demonstrating the ability of the 

model to manage variability in lighting, canopy coverage, and disease manifestation across citrus groves. 

 

Ding and Taylor [23] introduced an automatic citrus leaf disease detection system that relied on traditional image 

processing techniques, such as color and texture analysis, rather than deep learning. Although their work predates the 

widespread adoption of YOLO models, it provided foundational insights into feature extraction methodologies, which 

modern YOLO frameworks now automate and optimize for real-time deployment in disease detection tasks. 

 

Ghosal et al. [24] combined YOLOv3 with explainable artificial intelligence techniques, specifically Grad-CAM, to 

enhance transparency in citrus disease detection. Their framework not only achieved high detection accuracy but also 

provided visual explanations for the model’s predictions, thereby improving trust and interpretability. This model marks an 

improvement toward combining explainability into high-performance YOLO-based agricultural disease systems. 

 

Shoaib et al. [25] used ROI-based segmentation algorithms for plant disease detection in sophisticated agricultural settings. 

When it comes to small, anomalous shaped, and diseased plants the conventional models tend to falter since the background 

signals can cover the symptoms, so researchers used segmentation mechanism (ROI) to have better identification in areas 

of interest. In a similar manner, mask R-CNN uses layers of ROIAlign to extract regions contain specific lesion, aiming to 

effectively detect and draw the boundary of diseases in harvests like tomatoes, grapevines, and rice. Also, U-Net models, 
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which were produced in medical imaging, used in related tasks but to detect plant pathology, providing pixel-level ROI, to 

improve the symptoms recognition ability in citrus greening and curl virus of tomato leaf. Although these techniques show 

great performance capabilities in lesion segmentation, they tend to be computationally demanding and unsuitable for real-

time applications in field settings. 

 

 

Gomez-Flores et al. [26] introduced a two-step ROI approach that was used in CitrusUAT, where LAB color transformation 

and Otsu thresholding extracted the leaf regions against the background. Subsequently, it used ROI extraction to crop the 

inner leaf, where the disease symptoms are most apparent. This technique effectively suppresses background noise and 

enhances feature extraction, enabling accurate spatial localization of lesions and leaf boundaries.  

Tang et al. [27] implemented ROI to target the most informative parts of the leaf and reject background noise. Local sub-

region fusion has been found effective in hyperspectral imaging to enhance early detection of citrus diseases such as 

anthracnose, where subtle differences between healthy tissues and asymptomatic and symptomatic tissues have to be 

detected. Deep learning networks have also been used to further develop ROI use by incorporating attention-based systems, 

including the RoI-attention network (RA-Net), which refocuses a model on lesion-related areas to improve the 

segmentation of small disease spots. 

Bagga and Goyal [28] applied ROI extraction to segment the entire framework. Mask R-CNN and mask scoring R-CNN, 

among others, use ROIAlign to outline instance-level lesion boundaries, delivering highly accurate disease detection in 

tomato, rice, and grapevine. Pixel-based models such as U-Net and SegNet were also applied to medical imaging to isolate 

small symptomatic areas in crops such as citrus and tomato, and DeepLabv3+ uses multiscale ROI extraction to handle 

complicated and overlapping lesions. 

 

Moon and Kim [29] produced attention-based mechanisms that performed reframing through ROI to address the challenge 

of detecting small disease lesions. The RA-Net introduced a multistage framework where initial segmentation outputs are 

used to generate ROI-attentive images, which highlight diseased pixels and their surrounding context. By progressively 

refining lesion predictions through sequential stages, RA-Net achieved superior segmentation performance on small lesions 

while remaining lighter than transformer-based approaches. Although highly effective for lesion segmentation, RA-Net, 

similar to other segmentation-heavy models, focuses on pixel-level refinement rather than balancing accuracy with 

inference speed for large-scale deployment. 

Though different YOLO variant applications of YOLOv5 and YOLOv8 have been implemented to detect diseases in plants, 

most research did not critically examine the limitations of the architecture through the detection accuracy measured as its 

baseline. YOLOv5 added modular enhancements to the scalability of training and flexibility of deployment, whereas 

YOLOv8 made advances in detection with the addition of decoupled head structure and anchor-free predictions, which led 

to improved localization of the object and convergence. Both models employ non-maximum suppression (NMS) post-

processing, resulting in redundancy and additional time lag on inference particularly on dense or overlapping lesions typical 

of crop disease imageries. Comparatively, the YOLOv10 model uses two label assigning strategies to adopt an NMS-free 

training mechanism, that removes the bottlenecks post-processing steps and keeps the high accuracy detection of multiple 

objects. Furthermore, YOLOv10 deploys classification heads in ultra-lightweight manner, down-sampling decoupled-

spatial-channel, and rank-guided block optimizations, which save calculations and maximize attribute representation. The 

dual problem of accuracy and real-time inference speed can directly be solved by this innovated architecture and plagues 

previous YOLO use in the agricultural realm with more readily justifications in YOLOv10 adoption to meet the needs of 

citrus disease monitoring [30]. 

An integration of ROI with YOLOv10 is proposed to address the need for a detection system that achieves high accuracy, 

real-time performance, and domain-specific robustness simultaneously, contribute not only to advancing computer vision 

methodologies but also for supporting sustainable agricultural productivity through precise and timely plant disease 

detection. This design focuses on the lesion as provided by ROI-based segmentations and uses YOLOv10 as an efficient  

and fast detection model without the use of extensive preprocessing and multistage refinements. This effort not only 

improves the technical robustness of citrus disease diagnosis but also provides a practical framework for early intervention, 

precision agriculture, and disease spread prevention in orchards.  
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3. OVERVIEW OF THE YOLOV10 MODEL 

YOLO has emerged as one of the most powerful and widely adopted algorithms in the object detection field, particularly 

noted for its fast inference and resource-efficient operation. The core strength of the YOLO architecture lies in its compact 

model size, end-to-end structure, and rapid inference speed, which makes it particularly effective in environments that need 

low latency, such as video stream analysis and embedded systems. Unlike known two-stage detectors, YOLO applies a 

single-stage detection framework that treats object detection as a parameter regression task, enabling end-to-end prediction 

of spatial positions and object classes through a single execution of the network [31]. 

The structural simplicity of YOLO enables it to process full images holistically, allowing the model to learn global 

contextual features and thereby reduce false positives caused by misidentifying background elements as objects. This global 

perspective, combined with its architecture’s strong generalization capacity, enables YOLO to transfer learned 

representations effectively across different domains. Furthermore, by eliminating the need for region proposal stages, 

YOLO achieves significant speed advantages, thus making it feasible for real-time detection tasks. Despite these strengths, 

earlier versions of YOLO were known to trade off detection accuracy, particularly for small or densely packed objects, in 

favor of speed. However, ongoing architectural enhancements in recent YOLO variants (e.g., YOLOv5, YOLOv8, 

YOLOv10) continue to address these limitations through advanced feature fusion, attention mechanisms, and anchor-free 

detection strategies [31-32]. 

 

A significant breakthrough in reducing inference latency and streamlining the detection pipeline is achieved through 

YOLOv10’s innovative architecture. By removing the traditional NMS step and introducing a novel NMS-free training 

paradigm built upon dual label assignment strategies, YOLOv10 attains harmony between computational performance and 

detection efficiency. This design not only maintains a lightweight model footprint but also enhances real-time object 

localization capabilities, making it highly suitable for deployment in resource-constrained and latency-sensitive 

applications [33]. 

Architecturally, as shown in Fig. 1, YOLOv10 incorporates several key innovations. One of these is that it utilizes compact 

classification heads alongside spatially and channel-wise separated down-sampling, supported by a rank-guided block 

structure to improve computational performance and detection precision. These elements collectively contribute to a 

reduction in parameter count and computational overhead, thereby enhancing the model’s deplorability through a large 

variety of platforms, from efficient cloud infrastructures to resource-constrained edge devices. Moreover, YOLOv10 

demonstrates exceptional scalability without sacrificing inference speed or accuracy [34]. 

 

 

Fig. 1. YOLOv10 two-layer architecture  
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4. METHODOLOGY 

The methodology proposed to detect citrus diseases using an integration of ROI extraction with the advanced YOLOv10 

as an object detection model is illustrated in Fig. 2.  

 

Fig. 2. Diagram of the proposed methodology (ROI-YOLOv10) 

 

4.1 Obtaining the dataset and preparation 

Initially, an annotated dataset that was published in [37] was used for our experiments. In the present study, a 

comprehensive and high-resolution image dataset was used, specifically curated to support the recognition and detection 

of citrus leaf diseases through advanced computational techniques. The dataset collects three clinically significant citrus 

diseases: anthracnose, citrus canker as a total of 1,944 images, each represented by carefully annotated visual samples. 

Every image within the dataset maintains a standardized resolution of 640 × 640 pixels, captured under controlled lighting 

and consistent background conditions. The uniform conditions ensure visual clarity and compatibility with automated 

image analysis workflows. Machine learning and deep learning models use this dataset as an efficient resource for 

benchmarking and upgrading aimed at early-stage disease identification. Such efforts are central to enhancing precision 

agriculture, optimizing plant health monitoring, and informing epidemiological modeling related to disease transmission 

dynamics in citrus crops [35].  

- Anthracnose, caused by the fungal pathogen Colletotrichum gloeosporioides, is characterized by necrotic lesions 

accompanied by chlorotic halos. 

- Citrus canker, resulting from infection by Xanthomonas axonopodis pv. Citri presents as raised, corky lesions 

with prominent yellow halos. 

Leaf miner infestation, attributed to the larvae of Phyllocnistis citrella, is visually distinguished by serpentine 

mines that trace the internal leaf structure. 

 

4.2 Preprocessing of the dataset  

ROI pooling enables the efficient extraction of fixed-size feature maps from convolutional layers by selecting specific 

regions within the image that have a higher chance of containing objects. This step is central to improving computational 

performance and localization precision in traditional object detectors [36].    



 

 

322 Ismail et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 316–328 

An ROI is mathematically modeled as a binary mask M(x, y), where only selected areas of the input image are processed 

further [37]. In Equation (1), the coordinates of the ROI are defined as a rectangular portion of the image, based on the 

upper-left corner of the ROI. This step is performed to isolate only the relevant section of the input image such as an 

infected leaf or a diseased spot without the rest of the irrelevant background data. 

𝑅𝑂𝐼 = {(x,y) | 𝑥0 ≤  𝑥 ≤  𝑥0 + 𝑤, 𝑦0 ≤  𝑦 ≤   𝑦0 + ℎ}      (1) 

 where 

 (𝑥0,𝑦0)= top-left edge of the ROI 

 𝑤, ℎ = width and height of the ROI 

 𝑥, 𝑦 = pixel coordinates inside  

In Equation 2, the features within the bounded area are extracted and aggregated into a fixed grid, and the obtained 

feature representation will have uniform dimensions, independent of the size of the ROI. This ensures that it can be 

compatible with later deep learning layers. 

𝑅𝑂𝐼𝑃𝑜𝑜𝑙𝑒𝑑= pooling (F[𝑋𝑚𝑖𝑛: 𝑋𝑚𝑎𝑥 ,𝑌𝑚𝑖𝑛:𝑌𝑚𝑎𝑥] (         (2)  

where 

 𝑥𝑚𝑎𝑥 : 𝑥𝑚𝑖𝑛  = 𝑤𝑖𝑑𝑡ℎ 

 𝑦𝑚𝑎𝑥  : 𝑦𝑚𝑖𝑛 = ℎ𝑒𝑖𝑔ℎ𝑡     

 𝑤𝑖𝑑𝑡ℎ , ℎ𝑒𝑖𝑔ℎ𝑡 =  𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠  

For example, we have an image of a citrus leaf that has a disease. With the help of the ROI bounding box, the area of 

interest (i.e., the lesion) is surrounded by an ROI that excludes the soil and the surrounding leaves, as explained in Fig. 4. 

Then, Equation (2) uses ROI pooling on this region, which creates a feature map with a fixed size based on lesion-specific 

information. This helps eliminate background noise and significantly enhances detection accuracy. 

 

a)                                                                                    b) 

Fig. 3. Example image: a) original image b) original image after ROI 

4.3 Data splitting 

The dataset was randomly split into three sets: training, validation, and testing, which contained 1555, 194, and 195 

samples, respectively. Table 1 shows the number of images in each class of the dataset.  
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TABLE I. NUMBER OF INSTANCES IN EACH IS USED AS THE TRAINING, VALIDATION, AND TESTING SETS 

Class Label Training Validation Testing 

Anthracnose 170 19 20 

Citrus canker 258 63 25 

Leaf miner infestation 1123 112 150 

 

 

4.4 Training the YOLOv10 model 

A two-stage training approach was employed to develop an effective system for citrus disease diagnosis. First, an ROI 

segmentation model was trained to isolate the relevant parts of citrus images, typically the fruits and leaves, enhancing the 

quality and focus of the input data for subsequent analysis. This preprocessing step ensures that only meaningful visual 

content is passed to this stage. Subsequently, the YOLOv10 object detection model was trained with the Citrus dataset after 

determining the ROI. Adam optimizer was trained with a momentum of 0.9, a learning ratio of 0.001429, a batch size of 

16, a weight decay of 0.0005, and 30 epochs. The integrated programming environment, Google Colab (Colab Pro), utilizes 

the Python 3.11 language and Type 4 GPU (T4) for speedier calculations. 

 

4.5  Evaluation metrics 

In study that involves citrus disease detection, especially one involving deep learning algorithms that are used for object 

detection such as the YOLOv10 model, the model’s effectiveness can be evaluated by using three commonly used 

performance metrics, which are mathematically represented as shown in Equations (3)–(6) [38]. 

- 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)                         (3) 

- 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)                              (4) 

- 𝑚𝐴𝑃@50 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1 @50                           (5) 

- 𝐹1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                       (6) 

where  

TP (true positive) represents the number of cases that were accurately predicted to be positive. 

FP (false positive) is the number of samples that were wrongly predicted as positive. 

FN (false negative) is the number of cases that were improperly predicted as negative. 

AP is the mean precision for class 𝑖, with an intersection over union threshold of 0.50. 

N is the number of classes  

5. RESULTS AND DISCUSSION 
This section presents the results of citrus disease detection using the ROI-YOLOv10 model. 

A- Performance metrics 

This study randomly partitioned the dataset into three independent sets, namely, training, validation, and testing, with a 

ratio of 80%, 15%, and 5%, respectively, to validate the proposed models’ efficacy. Table 2 shows the experimental results 

of the proposed ROI-YOLOv10 model and indicates that the model outperforms the baseline YOLO10 through all 

evaluation metrics on training, validation, and test datasets. YOLO10 achieved moderate detection accuracy with training 

and validation mAP@50 values of 0.911 and 0.912, respectively, and mAP@95 values around 0.706–0.707. However, the 

test performance dropped to 0.84 (mAP@50) and 0.644 (mAP@95), along with a decline in precision (0.848) and recall 

(0.774), suggesting overfitting and reduced generalization capability. By contrast, ROI-YOLOv10 delivered consistently 

high performance, with test mAP@50 and mAP@95 both reaching 0.984, precision at 0.939, recall at 0.977, and F1 at 

0.975. These results reflect significant improvements in detection accuracy and robustness, indicating that the incorporation 
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of ROI features in ROI-YOLOv10 contributes to better object localization and fewer false positives. The superior 

generalization capability of ROI-YOLOv10 makes it a strong candidate for real-world deployment in critical object 

detection applications. 

 

 
TABLE II. RESULTS OF THE PROPOSED MODEL COMPARED WITH THE YOLOV10 

Model mAP@50 mAP@95 Precision Recall F1-score 

YOLO10 Training 0.911 0.707 0.892 0.818 0.85 

Validation 0.912 0.706 0.89 0.82 0.85 

Test 0.84 0.644 0.848 0.774 0.809 

ROI-YOLOv10 Training 0.99 0.99 0.956 0.961 0.958 

Validation 0.985 0.985 0.972 0.941 0.956 

Test 0.984 0.984 0.939 0.977 0.957 

 

 

Fig. 4 illustrates the qualitative detection results produced by the proposed ROI-YOLOv10 model on a diverse set of leaf 

disease images. Various types of leaf infections are identified and localized by the model effectively , such as leaf miner, 

canker, and anthracnose, as indicated by accurately placed bounding boxes and class labels. The system consistently 

demonstrates high detection accuracy and robustness despite variations in background complexity, lighting , leaf 

orientation, and disease severity. The model shows capability of handling dense scenarios in object detection and 

recognition by using multiple disease instances within a single image. The minimal overlap of bounding boxes and 

precise classification further confirms the system’s strong generalization ability. These visual outcomes complement the 

quantitative performance metrics, reinforcing ROI-YOLOv10’s effectiveness for real-time, field-level plant disease 

monitoring applications. 

 

Fig. 4. Visual results for the proposed citrus disease detection model (ROI-YOLOv10) 
 

B- Inference speed comparison 

Fig. 5 presents a comparative analysis of the inference speed between the baseline YOLOv10 and the proposed ROI-

YOLOv10 system during the two phases of training and testing. The results reveal that the proposed system consistently 

achieves lower inference times, with approximately 4.6 ms during training and 8.2 ms during testing, compared with 5.4 

and 10.4 ms for YOLOv10, respectively. These results show that ROI-YOLOv10 not only enhance detection accuracy 

but also offer superior, efficient computations. The reduced latency is particularly advantageous for real-time systems, 

such as autonomous models and video surveillance, where rapid and accurate object detection is critical. The balance of 

high precision with lower inference time highlights the scalability and practical application of the proposed model in 

performance-sensitive environments.  

 



 

 

325 Ismail et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 316–328 

 

Fig. 5. Inference time comparison  

C- Comparison of the proposed model with previous work  

        The proposed detection model is compared with earlier works on related applications in Table 3. The proposed ROI-

YOLOv10 system demonstrates notable improvements over existing methods in citrus disease detection in terms of 

inference speed and detection accuracy. In contrast to Xin et al. [16], who achieved 89.0% classification accuracy using a 

hybrid YOLOv4-EfficientNet pipeline, our model achieved superior performance with mAP@50 of 0.984, mAP@95 of 

0.984, recall of 0.977, precision of 0.939, and F1 of 0.957. Unlike Ali [17] and Wang et al. [18], who focused on general 

YOLOv5–v8 variants and enhancements for small-target detection without reporting full evaluation metrics, the proposed 

method integrates ROI-based segmentation before detection, allowing for better localization and generalization. Wu Xie 

[19] proposed a lightweight YOLOv8 variant for balanced speed and accuracy. Still, our approach goes further by achieving 

both high detection accuracy and reduced inference time (8.2 ms testing), validated in a real-world application. Chen [20] 

improved YOLOv4 using multiscale detection, but our method’s region-based segmentation, combined with YOLOv10, 

offers more precise detection of disease-affected areas. Additionally, Ghosal et al. [24] introduced explainable AI with 

YOLOv3 and Grad-CAM, whereas our approach prioritizes real-time efficiency and high accuracy of detection results in 

the field. Overall, the proposed ROI-YOLOv10 method outperforms previous studies by offering a robust and efficient 

pipeline tailored for early and accurate citrus disease detection under practical agricultural conditions. 

TABLE 3. COMPARISON OF THE PROPOSED SYSTEM WITH RELATED STUDIES 

References Model Dataset Size Evaluation Metrics 

Xin et al. [16] YOLOv4 + EfficientNet 1,524 images Accuracy 89.0%  

Ali [17] YOLOv5 / YOLOv7 / 

YOLOv8 

More than 1,000 labeled 

images 

mAP@50–95 = 96.1 

Wang et al. [18] LSD-YOLO (YOLOv8 

enhanced) 

4,441 healthy 

718 diseased  

Detection accuracy = 90.62 

mAP@50–90 = 80.84 

Wu Xie [19] Modified YOLOv8 Self-built dataset of 

HLP symptoms 

mAP@50 = 84.7 

Precision = 82.7 

Chen [20] YOLOv4 (4-scale 

enhanced) 

Multiresolution datasets Accuracy = 96.04 

Detection time = 0.06 s per frame 

Ghosal et al. [24] YOLOv3 + Grad-CAM 6,000 citrus disease 

images 

 Accuracy = 94.13%  

Proposed model ROI+YOLOv10 1,944 images  mAP@50 = 99 

mAP@95 = 99 

precision = 95.6 

recall = 96.1 

F1= 95.8 
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6. CONCLUSION 
In this study, we proposed a citrus disease detection framework that integrates ROI segmentation with the YOLOv10 

architecture (ROI-YOLOv10) to enhance the productivity of citrus crops and to reduce the adverse effects of leaf diseases.  

The ROI-YOLOv10 results significantly outperform those of the baseline YOLO10 across all performance metrics, 

including mAP@50, mAP@95, precision, and recall, with consistently high scores across training, validation, and test 

datasets. Unlike YOLO10, which exhibits signs of overfitting and diminished test performance, ROI-YOLOv10 maintains 

exceptional generalization, achieving test mAP@50 and mAP@95 values of 0.984, precision of 0.939, recall of 0.977, and 

F1 of 0.957. These findings demonstrate the effectiveness of combining ROI mechanisms into the YOLO architecture, 

leading to improved detection accuracy and robustness. The superior performance and stability of ROI-YOLOv10 confirm 

its suitability for deployment in real-world object detection scenarios and establish a practical foundation for future research 

and application in safety-critical domains. Future research will focus on extending the ROI-YOLOv10 framework to a 

wider variety of citrus diseases and pest infestations by enhancing its generalizability. Model optimization techniques such 

as pruning and quantization will be explored to enable real-time deployment on edge devices. Additionally, integrating 

multimodal data sources, including hyperspectral and UAV-based imaging, may further improve early detection 

performance under diverse field conditions. 
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