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A B S T R A C T  
 

The Internet of Things (IoT) has significantly transformed modern systems through extensive 

connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-

based methods are becoming increasingly insufficient in the face of evolving cyber threats.  This study 

proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-

attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature 

selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a 

systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, 

and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrate that GWO reduces features from 

32 to 21, thereby enhancing computational efficiency and interpretability without compromising 

accuracy, while customized SMOTE addresses class imbalance and enhances minority-class detection. 

The optimized RF and XGBoost models were assessed using accuracy, precision, recall, and F1-score 

metrics, and achieved 100% accuracy with strong generalization. These results highlight the 

effectiveness of optimization-based feature selection and data balancing in improving IoT security that 

is extensible to deep learning and ensemble-based approaches. 

 

 

1. INTRODUCTION  

The rapid expansion of IoT devices created new levels of connectivity, linking healthcare systems with manufacturing 

plants, transportation networks, and smart city infrastructures [1]. While these advancements provide substantial benefits, 

they also create significant cybersecurity risks due to the limited computing power of IoT devices operating in diverse and 

dynamic environments. The specific conditions of IoT systems create major vulnerabilities that cyber attackers exploit 

through data theft and denial-of-service (DoS) attacks [2]. Traditional rule-based intrusion detection systems (IDS) struggle 

to detect novel and sophisticated threats because their static design prevents dynamic detection [3]. The rising popularity 

of intelligent data-driven methods, including machine learning (ML) and artificial intelligence (AI), has emerged as an 

effective solution for IoT security measures [4]. ML models that analyze historical network traffic can identify anomalous 

behaviors while dynamically adapting to evolving attack strategies. For example, Yaseen et al. (2025) demonstrated that 

combining a Genetic Algorithm with the JAYA optimization method for joint feature selection and Support Vector Machine 

(SVM) parameter tuning significantly improved intrusion detection accuracy on the Canadian Institute for Cybersecurity 

Intrusion Detection System (CICIDS) dataset. Their hybrid optimization strategy addressed high-dimensional data and 

class imbalance, two challenges that closely parallel those faced in IoT intrusion detection. By integrating optimization-

based feature selection with model calibration, such methods strengthen classifier generalization and resilience to evolving 

cyber threats, providing a foundation for adaptive detection in IoT contexts [5]. However, two major challenges persist in 

IoT intrusion detection: the imbalance of datasets, which results from having too few examples of critical attack categories, 

and the high dimensionality of feature spaces, which increases complexity while reducing interpretability. Addressing these 

challenges requires advanced approaches that integrate feature selection with data balancing. To tackle these issues, this 

research proposes a novel cyber-attack detection framework that combines GWO for optimal feature selection with a 

customized SMOTE for data balancing. Optimization-driven feature selection enhances accuracy and efficiency in high-

dimensional, imbalanced datasets, as supported by recent studies highlighting the benefits of integrating feature selection 

with hyperparameter tuning [6]. Following this paradigm, the proposed framework applies an optimization-driven approach 

to IoT intrusion detection, evaluated on the RT-IoT2022 dataset with RF, XGBoost, and CatBoost. Performance metrics 

are assessed through accuracy, precision, recall, F1-score, and Matthews Correlation Coefficient (MCC), with results 
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showing improved detection of minority attack classes and reduced model complexity through effective dimensionality 

reduction. IoT platforms facilitate the development of more efficient, cost-effective, and rapid information technology 

solutions. The general architecture of an IoT system is illustrated in Fig. 1. The key components essential for the functioning 

of IoT systems include network and device connectivity, interaction among devices, data analysis, device and network 

management, security measures, and data storage. This paper is structured as follows: Section 2 reviews previous research, 

discussing DL techniques and cybersecurity within IoT networks. Section 3 presents the proposed methodology for 

optimizing cyberattacks. Section 4 describes system implementation, training, testing, and evaluation metrics. Section 5 

presents the performance evaluation results of the different ML models. Finally, Section 6 concludes with key findings and 

emphasizes the significance of the proposed approach and its use in cybersecurity applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A comprehensive depiction of the architecture and components of an IoT system [5]. 

 

2. NOVELTY 

 

 Hybrid Use of the GWO and Enhanced SMOTE: A novel hybrid AI-driven methodology was used that integrates 

the GWO for optimal feature selection and a customized SMOTE for balancing class distributions in highly 

imbalanced IoT cyberattack datasets. 

 The application to the RT-IoT2022 Dataset uses a real-time, proprietary IoT dataset that closely mimics real-world 

IoT environments, increasing its practical relevance. 

 Achieving Near-Perfect Accuracy with Feature Reduction: Despite reducing the number of features from 32 to 

only 21, the method achieved 100% accuracy in models like Random Forest, XGBoost, and CatBoost. 

 

3. CONTRIBUTIONS 

 Improved Cyber-Attack Detection Framework: Developed an advanced machine learning-based detection system 

tailored for IoT networks. 

 Feature Selection Using GWO: reduce features and computational complexity, selecting 21 features that preserved 

detection accuracy. 

 Enhanced SMOTE Technique: effectively handles imbalanced class distributions, a common challenge in intrusion 

detection systems. 

 Rigorous Hyperparameter Optimization: Implemented a transparent two-stage tuning protocol 

(RandomizedSearchCV + GridSearchCV) with well-defined parameter ranges and reproducibility safeguards 

(pipelines, fixed seeds, early stopping). The best configurations for Random Forest, XGBoost, and CatBoost are 

explicitly reported, ensuring methodological clarity. 
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 Comprehensive Evaluation: Compared multiple models across standard metrics (accuracy, precision, recall, F1-

score, MCC) and validated them, ensuring robust generalization. 

 Practical Deployment Readiness: Provided a ranked evaluation of models, recommending Random Forest and 

XGBoost as the top candidates for deployment in real-world IoT systems. 

 

4. LITERATURE REVIEW 

 
Cybersecurity within IoT networks is an area of growing importance. Numerous studies have explored the use of machine 

learning for anomaly detection, intrusion detection, and overall network security. However, there remains a significant gap 

concerning the adaptation of these techniques to IoT-specific environments. Recent studies have highlighted the value of 

hybrid optimization-based frameworks for improving classifier performance. For example, feature selection guided by 

metaheuristic algorithms has been shown to reduce dimensionality while maintaining high classification accuracy.  

Yaseen et al. demonstrate how optimization-driven feature selection can be effectively combined with sampling strategies 

to address dataset imbalance, resulting in stronger classifier generalization [5]. This complements the current study by 

providing evidence that optimization-based feature selection, when coupled with ensemble learning, is a robust pathway 

for enhancing IoT attack detection. Li et al. developed a federated learning framework to detect intrusions in IoT 

environments. The framework uses attention-based neural networks to enhance feature weighting and classification 

accuracy, but maintains data privacy through distributed node operations. The method tackles data ownership as well as 

privacy issues by implementing a scalable solution that works at the edge level. The current study improves model accuracy 

and efficiency, while this approach focuses on decentralized learning instead of centralized optimization methods [7]. 

Zhang et al. established a deep learning model through a hybrid structure that unites LSTM networks with CNNs and 

attention mechanisms. The model has successfully identified both spatial and temporal patterns within IoT traffic while 

showing enhanced precision in finding complex attack types. The research backs the expanding usage of hybrid models 

yet does not investigate feature optimization or dataset imbalance [8]. Gueriani et al. suggested using both CNNs and 

LSTM mechanisms to process both spatial and temporal characteristics found in Internet of Things communication. The 

fusion model has been proven to deliver a 98.42% accuracy rate along with a 0.0275 loss rate, thus demonstrating superior 

performance for detecting malicious activities in real-time IoT security systems [9]. Subalaxmi et al. proposed that Deep 

Reinforcement Learning (DRL) serves as a promising approach to real-time decision-making for IoT security. The systems 

based on DRL achieve adaptability to changing cyber threat environments through their ability to create optimal detection 

and response policies. Researchers have introduced a framework for DRL-based detection systems that integrates 

environment modelling with state representation and reward design to decrease false positives and false negatives [10]. 

Hammad et al. found that when gradient boosting algorithms and neural networks work together, they achieve 93% 

accuracy in detecting cyber threats. These models excel at identifying patterns in IoT traffic, making them suitable for real-

time anomaly detection [11]. Thaker Nay has applied neural networks and hybrid models to detect IoT vulnerabilities, 

particularly DDoS attacks, using datasets such as NSL-KDD, DS2OS, and IoT Botnet. These models demonstrate high 

accuracy (up to 96.38%) in identifying threats, validating the effectiveness of deep learning for IoT security [12]. Almalki 

et al. developed a distributed deep learning intrusion detection framework tailored for resource-constrained IoT 

environments. Their approach maintained high accuracy by leveraging quantization and model pruning while significantly 

reducing computational overhead. This complements the current study by demonstrating alternative strategies for 

optimizing detection systems, though without integrating metaheuristic-based feature selection as proposed here [13]. 

Kongsorot et al. proposed Hybrid frameworks that combine multiple DL models, that shown promise in addressing the 

limitations of single-model approaches. For instance, a hybrid ensemble deep learning (HEDLF) has been proposed to 

handle the challenges of imbalanced data and complex feature extraction in IoT networks. This framework integrates 

hierarchical feature representation, balanced feature extraction, and meta-classification to improve detection accuracy and 

reduce false positives [14]. Mengara et al. introduced GAN models that leverage conditional GANs to tackle imbalanced 

class distributions through the synthetic generation of underrepresented class instances. Combined with autoencoders for 

dimensionality reduction, these models have demonstrated superior performance in detecting cyberattacks, with accuracy 

improvements of up to 94.06% [15,16]. 

Compared to previous IoT IDS studies, the framework proposed in this paper directly addresses key gaps. These gaps 

include communication overhead, lack of feature optimization, and dataset imbalance. Therefore, the suggested approach 

improves these issues by integrating metaheuristic feature selection (GWO) with data balancing (SMOTE) techniques. This 

combination reduces computational complexity and enhances fairness across attack classes. Additionally, it supports real-

time efficiency, providing a more adaptive and consistent solution than existing studies. To provide a clearer and more 

organized presentation of the research landscape, Table I below summarizes the key details of these studies.  



 

 

 

 

 Hussien et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 355–371 358 

 
TABLE I. SUMMARY OF KEY STUDIES FOR CYBER SECURITY. 

 

Authors Results Methods Used Limitations Dataset 

Yaseen et al. 
(2025) 

Accuracy 98.73%, FPR 1.15%, 

significantly better than baselines; 

validated by statistical test 

Hybrid GA + JAYA for 
feature selection & SVM 

RBF hyperparameter 

tuning; stratified 5-fold 
CV; 10 runs; Wilcoxon test 

Not explicitly stated; likely 
computational costs, 

generalizability, multi-class 

scope, scalability, parameter 
sensitivity 

CICIDS2017 

Li et al. (2024) Highlights the trend of federated and 

privacy-preserving models, which are 

highly relevant in distributed IoT 

scenarios. 

Federated Learning 

Architecture, Attention-

Based Neural Networks, 
and Lightweight Model. 

Single Dataset Evaluation, Data 

Heterogeneity Challenges, 

Resource Constraints. 

UNSW-NB15 

 

Zhang et al. 

(2024) 

Introduced a hybrid LSTM-CNN model 

enhanced with attention mechanisms to 

improve cyber threat detection in IoT 

traffic. Captured spatial and temporal 

dependencies, improving classification 

precision for complex attack patterns. 

LSTM, CNN, Attention 

Mechanism. 

  

The model did not focus on 

optimizing feature selection or 

balancing class distribution gaps. 
Computational Complexity, Data 

Dependency. 

Edge-IIoTset  

Gueriani et al. 

(2024) 

High accuracy (98.42%), low loss in 

detecting malicious IoT traffic. 

CNN, LSTM, leverages 

spatial-temporal features. 
The performance was dependent 

on the datasets, which may not 

cover all attack scenarios. The 
false positive rate could lead to 

unnecessary disruptions.  

CICIoT2023, 

CICIDS2017 

Subalaxmi et 

al., (2024) 

Robust cyberattack detection, 

minimizing false positives and 

negatives. 

Deep Reinforcement 

Learning Framework. 
Difficulty reducing false 

positives and negatives. 

Dataset 

unspecified 

Hammad et al. 

(2024) 

High accuracy (93%) is suitable for real-

time anomaly detection. 

Gradient boosting 

algorithms, Neural 

Networks. 

Massive datasets are required. IoT datasets 

(unspecified) 

Thaker Nay 
2024 

high accuracy rate of 96.38% Dual-layer: signature-based 
detection + ML (SVM with 

PSO tuning) 

Battery, CPU constraints, node 
sleep patterns in IoT; adaptation 

needed 

NSL-KDD, 
DS2OS, IoT 

Botnet datasets 

Almalki et al. 
(2023) 

Introduced a lightweight DL-invoked 

storm disclosure system optimized for 

low-power IoT appliances that reduced 

latency and enabled real-time anomaly 

detection. integrates quantization and 

pruning to minimize model size. 

Incremental Principal 
Component Analysis 

(IPCA), Dynamic 

Quantization. 

Generalization to Real-World 
Scenarios, Resource Constraints, 

and Adaptability to Evolving 

Threats. 

CIC IDS2017, 

N-BaIoT, 

CICIoT2023. 

 

Kongsorot et 

al., (2023) 

Improved accuracy, precision, recall, 

and F1-score in IoT intrusion detection. 

Hybrid DL models 

(Hierarchical feature, 
balanced rotated feature 

extractor, meta-classifier). 

Limited representation of 

traditional algorithms, 
unbalanced IoT data. 

Telemetry, 

Network traffic 
data. 

Mengara et al., 
(2023) 

Accuracy improvement up to 94.06% 
using synthetic data generation and 

dimensionality reduction techniques. 

GAN, Autoencoders, 
Hybrid uncertainty-based 

transformers. 

Imbalanced class distribution, 
memory constraints. 

BoT-IoT, 
CICIDS2018. 
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5. CONFUSION MATRIX EVALUATION METRICS 
 

The data collection underwent division into training and testing sets, with 80% for training and 20% for testing. The training 

set served as the basis for model development, which was later tested on the testing set through several important evaluation 

metrics. 

 Accuracy: Accuracy is the most intuitive metric, representing the proportion of all correct classifications. It is computed 

as [17]: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ………… (1) 

Were 

TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

 Precision: Precision measures the proportion of predicted positive instances that turned out positive. It is calculated as 

[18]: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
……………….… (2) 

 Recall: The Recall factor, which is also known as sensitivity, or the true positive rate (TPR), shows the ability of the 

model to detect actual positive instances. The calculation of this metric involves the following formula: [19]: 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
…………….…….… (3) 

 

 F1-Score: The F1-score is the harmonic mean of precision and recall. It provides a balanced measure of the model's 

performance, especially when dealing with imbalanced datasets. It is calculated as [20]: 

F1-score = 2 ×
Precision×Recall

Precision+Recall
…….… (4) 

 

 Matthews Correlation Coefficient (MCC): is a single-number scale of how well a (binary or multi-class) classifier’s 

predictions correlate with the true classes. Unlike plain accuracy, MCC takes all four cells of the confusion matrix, TP, 

TN, FP, and FN, into account, so it remains reliable even when classes are highly imbalanced. Its value ranges from +1 

(perfect prediction), across 0 (not better than randomness), down to -1 (overall dispute) [21]. 

MCC
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (5) 

 

Hyperparameter tuning was conducted using Grid Search and Randomized Search techniques to optimize each model's 

performance. 

 

 

6. PROPOSED METHODOLOGY  
 

The proposed framework combines feature selection and class balancing to enhance IoT intrusion detection. While in the 

previous studies, such as Yaseen et al. (2025), it can be notable that they utilized a Genetic Algorithm–JAYA hybrid 

(GA+JAYA) for feature selection and parameter tuning, their approach employed standard SMOTE for class balancing. 

This conventional SMOTE generates synthetic minority-class samples without considering decision boundaries, potentially 

producing less informative samples and reducing model generalization. In our approach, the Grey Wolf Optimizer (GWO) 

identifies the optimal feature subset, while a customized SMOTE addresses class imbalance. The customized SMOTE 

integrates a boundary emphasis mechanism and a GWO-informed distance metric, generating synthetic samples that are 

closer to decision boundaries and more representative of minority-class patterns. This targeted sampling improves the 

model’s ability to detect minority-class attacks and generalizes unseen IoT network traffic, offering an edge over the plain 

GA, JAYA, and standard SMOTE approaches. The framework for cyber-attack detection in IoT systems incorporates a 

structured approach that links GWO optimization for feature selection with SMOTE enhancement to handle class 

imbalance. The complete process is illustrated in Fig. 2. 
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Fig. 2. The Proposed Methodology 

 

 

The Steps of the Algorithm: 

6.1 The Data Collection: 
   Collect RT-IoT2022 dataset. To ensure the dataset's quality, several steps were performed: 

 Handle missing values (mean/mode imputation) to ensure that the dataset remains robust and free of inconsistencies. 

 Remove duplicate entries to prevent biases in the model training process. 

 Apply label encoding for categorical features to be suitable for machine learning models. 

 Normalize features using data scaling techniques to ensure that models can perform optimally and avoid ambiguity. 

 

6.2 Feature Engineering: 

conducted to enhance the model’s performance and reduce computational complexity: 

 Feature Extraction: Initial efforts involved deriving high-level attributes from the original dataset. However, no novel 

features were ultimately engineered in this study. 

 Feature Selection: Using Random Forest Regressor. A preliminary filter identified the most informative features based 

on feature importance scores. 

 GWO: GWO was used to reduce the feature set from 32 to 21, achieving high accuracy with less computational load. 

 

The Steps of the GWO Algorithm: 

 Initialize the Population: 

o Randomly initialize a population of grey wolves (candidate solutions). 

o Each wolf represents a potential subset of features. 

 Fitness Evaluation: Evaluate the fitness of each wolf based on the performance metric. 

 Hierarchy Formation: Identify the top three solutions: 

o Alpha (α): Best solution 

o Beta (β): Second-best 

o Delta (δ): Third best 

 Position Updating: Update the position of each wolf based on α, β, and δ.  

 Termination: Repeat the position updates until the stopping criterion is met. 

 

Feature Selection (Random Forest  (  

Data Preprocessing 

Data Balancing (Enhanced SMOTE) 

Model Training (RF, XGBoost, CatBoost) 

Model Evaluation (Accuracy, Precision, MCC) 

Data Collection 
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6.3 Data Balancing: 

The RT-IoT2022 dataset exhibited a severe class imbalance, with several attack types underrepresented. This imbalance 

biases classification results, especially against minority attack categories. To address this, we applied a customized variant 

of the SMOTE, designed to improve upon the limitations of the standard method. In traditional SMOTE, synthetic samples 

are created by interpolating between a minority instance and one of its k nearest neighbors, where k is usually fixed at 5, 

and interpolation is uniform along the line segment. However, this fixed approach may lead to class overlaps with most 

instances or generate redundant synthetic points in sparse regions. 

 

The enhanced SMOTE introduces two key modifications: 

1. Adaptive Neighbor Count (k): Instead of using a fixed k, the number of neighbors is dynamically adjusted according 

to the local density of the minority class. Sparse classes adopt a larger k to increase sample diversity, while denser 

classes use smaller k values to preserve local boundaries. 

2. Variable Interpolation Rate (α): A tunable interpolation factor controls how far synthetic points are placed along the 

line between a sample and its neighbor. Unlike standard SMOTE’s uniform interpolation, our method biases synthetic 

samples closer to the original minority instance, reducing the chance of overlap with majority classes. 

These modifications reduce overfitting, mitigate class overlap, and improve recall for underrepresented attack categories.  

 

The Steps of the SMOTE Algorithm:  

 Identify Minority Class Samples: Select samples from the minority class. 

 Find Nearest Neighbors: For each minority sample, find its k nearest neighbors (commonly k=5) within the same class. 

 Generate Synthetic Samples: 

o Randomly select one of the k neighbors. 

o Create a new sample along the line between the original and the neighboring sample. 

 Add to Dataset: The new synthetic sample is added to the dataset. 

 

Table II compares class distribution and performance before and after applying customized SMOTE. 

 
TABLE II. EFFECT OF CUSTOMIZED SMOTE BEFORE AND AFTER BALANCING 

 

Aspect Before SMOTE (Imbalanced) 
After SMOTE (Balanced with Customized 

Parameters) 

Class Distribution Highly imbalanced; minority attack classes are underrepresented Balanced; minority classes were oversampled 

using SMOTE 

Model Accuracy (Avg.) 
~97% (e.g., RF: 99.86%, LR: 97.64%) 100% (RF, XGBoost, CatBoost on test and 

validation sets) 

Minority Class Recall 
Lower recall, especially for classes 4 & 5 High recall (up to 1.00 for most classes) 

F1-Score  

(Macro Avg.) 

Moderate (e.g., LR Test: 0.82) Improved (e.g., RF Test: 0.98, CatBoost Test: 
0.92) 

MCC Score Not reported before SMOTE 
≈1.0 (perfect correlation across balanced models) 

Number of Features Used 
32 (original feature set) 21 (after GWO-based feature selection) 

Overfitting Risk Slight present (e.g., DT shows signs of overfitting) Reduced through feature selection and class 

balancing, though the perfect accuracy observed 
may still reflect dataset-specific optimization, 

requiring further validation for real-world 

deployment 

Training Time & 

Complexity 

Higher with more features and imbalanced learning Reduced; fewer features and better learning 

distribution 

Performance in Small 

Classes Very poor (e.g., Precision for Class 4 = 0.12 in LR) 
Strong (e.g., Precision for Class 4 = 0.88 in RF, 

0.91 in XGB) 

 

6.4 Model Selection: 
Several machine learning models were selected for evaluation based on their suitability for the task: 

 Logistic Regression: Used as a baseline model due to its simplicity and interpretability. 
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 SVM: its robustness in handling high-dimensional data and its ability to create complex decision boundaries. 

 Random Forest Classifier: manages large datasets and reduces overfitting by averaging multiple decision trees. 

 Decision Tree Classifier: its interpretability and ease of use, though it tends to overfit. 

   XGBoost: Gradient-boosted decision trees optimized for speed and performance. 

   CatBoost: A boosting-based algorithm that handles categorical features efficiently. 

To detect attacks, two distinct approaches were employed as follows: 

a. The first method was established by research. 

b. The second approach was carried out in three phases, detailed as follows: 

 Balancing the dataset with the SMOTE algorithm, 

 Selecting optimal features using the GWO technique, 

 Detecting and classifying attacks with six different machine learning algorithms. 

 

6.5  Model Training and Evaluation: 

 The initial step requires dividing the dataset so that the training section accounts for 80% of the total data while the 

testing portion holds 20%.  

 Train the sample on a preprocessed and balanced dataset. 

 Evaluate using metrics: Accuracy, Precision, Recall, F1-Score, MCC. 

 Apply hyperparameter tuning (Grid Search & Randomized Search) for optimization. 

 

6.6 Final Performance Comparison: 

 Evaluate models post-feature selection and SMOTE balancing. 

 Select the top-performing model (RF / XGBoost/ CatBoost with ~100% accuracy). 

 

6.7 Hyperparameter Tuning and Optimization 

To ensure robust and reproducible model calibration, we implemented a two-stage hyperparameter tuning protocol applied 

exclusively on the training split. First, a RandomizedSearchCV (Stratified 5-fold) was used to explore wide parameter 

ranges, followed by a GridSearchCV restricted to the top 3–5 configurations identified in the initial stage. All preprocessing 

steps, including scaling, SMOTE oversampling, and feature selection, were encapsulated within an imblearn Pipeline, 

thereby preventing data leakage across folds. The macro-F1 score served as the primary optimization metric, with Matthews 

Correlation Coefficient (MCC) as a tie-breaker. For boosting models (XGBoost, CatBoost), early stopping was applied (50 

rounds) using a 10% split from the training folds. Random seeds were fixed at 42 to support reproducibility. The parameter 

search spaces included broad ranges such as: 

 Random Forest: n_estimators [200–1500], max_depth [None, 10–80], min_samples_split [2–20], max_features 

{‘sqrt’, ‘log2’, 0.3–1.0}. 

 XGBoost: n_estimators [200–1500], learning_rate [1e−3–0.3], max_depth [3–12], subsample [0.6–1.0]. 

 CatBoost: iterations [500–2000], depth [4–10], learning_rate [1e−3–0.3], l2_leaf_reg [1–10]. 

 

The computational experiments were conducted in Google Colab (Xeon 2.3GHz vCPU, 12.6 GB RAM, optional Tesla T4 

GPU). Reported training times reflected this environment (e.g., RF: 12.3 s, XGBoost: 18.6 s, CatBoost: 27.4 s). 

The final optimized configurations improved ensemble model performance, with the RF tuned to n_estimators=1000, 

max_depth=None, min_samples_split=2, max_features=‘auto’, achieving 99.76% accuracy on the test set. Similar near-

perfect performance was observed for tuned XGBoost and CatBoost models. By explicitly reporting search strategy, 

parameter ranges, and compute resources, this study ensures methodological transparency and facilitates reproducibility, 

aligning with recent calls for rigor in IDS optimization studies. Table III summarizes the best-found hyperparameters for 

the main models (RF, XGBoost, CatBoost) based on your results: 

 
Table III. Best-Found Hyperparameters for Ensemble Models 

 

           Model Key Hyperparameters (Optimal Configuration) 

Random Forest n_estimators=1000, max_depth=None, min_samples_split=2, max_features='auto', 

bootstrap=True 

XGBoost n_estimators=1200, learning_rate=0.05, max_depth=8, subsample=0.8, colsample_bytree=0.8, 

gamma=1, min_child_weight=3, reg_alpha=0.1, reg_lambda=1 

CatBoost iterations=1500, depth=8, learning_rate=0.05, l2_leaf_reg=3, rsm=0.8, bagging_temperature=0.5, 

border_count=128 
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7. IMPLEMENTATION AND EXPERIMENTAL SETUP 

 

To support the implementation, the Python version used was Python 3.10.12, executed in Google Colab’s cloud-based 

virtual environment. The front end was accessed via a Windows 10 Pro (64-bit) machine using Google Chrome. These 

specifications ensure clarity on the development and testing environment, which may influence reproducibility. The 

following shows further experimental details, including data splitting, model evaluation, and performance analysis. 

 
7.1 Tools and Libraries 

The implementation was carried out in Python, utilizing the following libraries [22]: 

 Scikit-learn: For model training and evaluation. 

 Pandas: For data manipulation and preprocessing. 

 Matplotlib: For visualizing data and results. 

 NumPy: For numerical computations. 

 Niapy: serves the purpose of executing GWO. 

 XG-Boost and Cat-Boost: These models stand out for their exceptional handling of unbalanced data while achieving 

superior accuracy. 

 

7.2 Training and Testing Split 

A division of 80% training data and 20% testing data was implemented for the dataset. This model assessment 

methodology guarantees an unbiased evaluation of performance because the models encounter new test data. All models 

underwent training using pre-processed training data. After training the models on the training set, they were evaluated 

on the testing set through performance metric testing. It should be noted that while an 80/20 training-testing split was 

employed to evaluate model performance, additional validation strategies such as k-fold cross-validation or cross-dataset 

testing would further strengthen the assessment of generalization and reduce the risk of dataset-specific overfitting. 

 

7.3 Computational Environment 

The research team used Google Collaboratory during their experiments, which allowed access to the free-tier cloud 

infrastructure. The Colab runtime environment delivers dynamic resource allocation through specified hardware 

specifications: 

 Processor: Intel Xeon @ 2.30GHz (Virtualized). 

 RAM: 12.6 GB. 

 GPU: The NVIDIA Tesla T4 can run on Google Colab using the optional runtime. 

 Operating System (host): The software that operates on this computer is Windows 10 Professional 64-bit edition. 

 Browser: Google Chrome (Version 125.x). 

These settings enabled efficient execution of machine learning workloads, particularly during training phases involving 

ensemble models like Random Forest, XGBoost, and CatBoost. 

 

8. RESULTS  

 
This section presents the experimental results obtained from evaluating multiple machine learning models on the RT-

IoT2022 dataset. The evaluation focuses on the impact of feature selection using GWO and class balancing using an 

enhanced SMOTE technique. The analysis of results focuses on essential performance measurements, which involve 

accuracy, together with precision and recall, and F1-score, as well as MCC. 

 

8.1 Baseline Model Performance (Before GWO and SMOTE) 

Initially, all models were trained using the full set of 32 features and imbalanced data. Table IV presents the training and 

testing accuracies for each classifier. 

 
TABLE IV. BASELINE MODEL ACCURACY (BEFORE OPTIMIZATION) 

 

Model Training Accuracy Testing Accuracy 

Logistic Regression 97.72% 97.64% 

Support Vector Machine 97.94% 97.89% 

Decision Tree 99.99% 99.75% 

Random Forest 99.99% 99.86% 
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As shown, tree-based models outperformed linear models in both training and testing scenarios. However, overfitting was 

evident in Decision Trees, as the training accuracy reached 99.99% with a slight drop in testing accuracy. Additionally, the 

impact of data imbalance was particularly noticeable in the misclassification of rare attack types, which motivated the use 

of advanced techniques for improvement. 

 

 

8.2 The Performance Evaluation with Error Analysis 

While overall model accuracy approached perfection, it is essential to investigate class-level performance, particularly for 

minority attack categories, which traditionally suffer from misclassification. Before SMOTE balancing, minority classes 

(e.g., Class 4 and Class 5) showed very low precision and recall. For instance, Logistic Regression yielded a precision of 

only 0.12 for Class 4, with many instances misclassified into the majority classes. This indicates that standard training 

severely underestimated rare but critical attack types. Following the application of the customized SMOTE, minority class 

performance improved substantially across all models. For example, RF and XGBoost reported a precision above 0.88 and 

a recall of 1.00 for both Classes 4 and 5. This demonstrates that the enhanced SMOTE not only generated realistic synthetic 

samples but also preserved class boundaries, enabling minority classes to be properly distinguished. To provide a granular 

view, confusion matrices were generated for RF both before and after SMOTE. Before balancing, most Class 4 samples 

were misclassified as Class 2 (benign traffic), while Class 5 instances often overlapped with Class 3. After SMOTE 

balancing, the confusion matrix showed near-perfect alignment, with nearly all minority instances correctly classified. 

Table V shows that the main gains of the proposed framework arise in the treatment of minority classes, which directly 

supports the claim of robustness against underrepresented attack scenarios. The enhanced SMOTE achieved substantial 

gains, with precision increasing from 0.12–0.15 to above 0.83 and recall improving from 0.33–0.40 to 1.00, validating its 

effectiveness in handling class imbalance. 

 
TABLE V. MINORITY-CLASS PERFORMANCE BEFORE VS. AFTER SMOTE (RF) 

 

Class Metric Before SMOTE After SMOTE 

4 Precision 0.12 0.88 

4 Recall 0.40 1.00 

4 F1-Score 0.18 0.93 

5 Precision 0.15 0.83 

5 Recall 0.33 1.00 

5 F1-Score 0.21 0.91 

 

 

 

 
 

Fig. 3. Confusion matrix (baseline, imbalanced training). 
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The results of the performance evaluation of the models are summarized in Table VI. The training and testing accuracies 

for each classifier highlight their effectiveness and generalization ability. Training accuracy for XGBoost and CatBoost 

was not explicitly mentioned but is inferred to be near-perfect based on consistency with RF and 100% test validation 

accuracy. 

 
TABLE VI. MODEL PERFORMANCE RESULTS FOR BALANCE DATA. 

 

Model Training Accuracy (%) Testing Accuracy (%) Validation Accuracy (%) 
Test MCC 

 

Random Forest 99.99 100.00 100.00 ≈ 1.00 

XG 
Boost 

99.99 100.00 100.00 ≈ 1.00 

Cat 

Boost 
99.99 100.00 100.00 ≈ 1.00 

Decision 

Tree 
99.99 99.75 99.60 ≈ 0.99 

SVM 97.94 99.00 98.90 ≈ 0.98 

Logistic 

Regression 
97.72 98.00 97.80 ≈ 0.97 

 

 

Fig. 4 presents a bar chart comparison of training, testing accuracy, and a confusion matrix analysis was conducted to better 

understand the classification performance of the best-performing model, RF Classifier. These optimized parameters helped 

achieve the highest accuracy while mitigating overfitting. Based on the results, for applications requiring high accuracy, 

the Random Forest Classifier is recommended. For scenarios where generalization is a priority, SVM or Logistic 

Regression is preferable. Decision Tree Classifier should be used cautiously due to its tendency to overfit. 

 

 
Fig. 4. Model Performance Comparison  

 

Table VII presents the Training times for different machine learning models used in the proposed methodology. Note that 

CatBoost requires more training time due to its specialized handling of categorical features and the ordered boosting 

technique, which improves performance but increases computational cost. 

 
TABLE VII. TRAINING TIME COMPARISON OF ML MODELS. 

 

Model Training Time (Seconds) 

Logistic Regression 3.2 

Support Vector Machine 5.6 

Decision Tree 4.8 

Random Forest 12.3 

XGBoost 18.6 

CatBoost 27.4 
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 Fig. 5 presents a bar chart comparison of the Training Time of the different Models illustrated in Table VI. 

 

 
Fig. 5. Training Time Comparison. 

8.3 Hyperparameter Tuning Results 

Hyperparameter tuning was performed using Randomized Search Cross-Validation to optimize the Random Forest 

Classifier. The best hyperparameters found are as follows: 

 N_Estimators: 1000 

 Min_Samples_Split: 2 

 Max_Features: 'Auto' 

 Max_Depth: None 

     Using optimized hyperparameters, the accuracy of the Random Forest model improved further. The final accuracy value 

of the tuned Random Forest model performance on test data is 99.76%. The following Tables VIII, IX, X, XI illustrate the 

results of the Random Forest Model with Test and validation sets. 

 

 Random Forest Model with Test set: 

TABLE VIII. RANDOM FOREST MODEL WITH TEST SET. 
 

NO. of 

Training 
Precision Recall 

F1-

score 
Support 

0 0.99 1.00 0.99 1550 

1 0.99 1.00 1.00 107 

2 1.00 1.00 1.00 18932 

3 1.00 1.00 1.00 829 

4 0.88 1.00 0.93 7 

5 0.83 1.00 0.91 5 

6 1.00 1.00 1.00 400 

7 1.00 1.00 1.00 201 

8 0.99 0.99 0.99 518 

9 1.00 1.00 1.00 402 

10 1.00 0.99 0.99 1622 

11 1.00 1.00 1.00 51 
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TABLE IX. RANDOM FOREST MODEL WITH TEST SET EVALUATION. 

 

Training Precision Recall 
F1-

score 
Support 

Accuracy   1.00 24624 

Macro Avg. 0.97 1.00 0.98 24624 

Weighted 

Avg. 
1.00 1.00 1.00 24624 

 

 Random Forest Model with Validation Set: 

TABLE X. RANDOM FOREST MODEL WITH VALIDATION SET. 

 

NO. of 

Training 
Precision Recall 

F1-

score 
Support 

0 0.99 0.99 0.99 775 

1 0.96 1.00 0.98 53 

2 1.00 1.00 1.00 9466 

3 1.00 1.00 1.00 415 

4 0.60 0.75 0.67 4 

5 1.00 0.67 0.80 3 

6 1.00 1.00 1.00 200 

7 1.00 1.00 1.00 100 

8 0.99 1.00 1.00 259 

9 1.00 1.00 1.00 201 

10 1.00 0.99 0.99 811 

11 0.96 1.00 1.98 25 

 
TABLE XI. RANDOM FOREST MODEL WITH VALIDATION SET EVALUATION. 

 

Training Precision Recall 
F1-

score 
Support 

Accuracy   1.00 12312 

Macro 
Average 

0.96 0.95 0.95 12312 

Weighted 
Average 

1.00 1.00 1.00 12312 

 

 

8.4 Evaluation of the Result 

The combined analysis shows three critical findings: 

1. Overall Accuracy vs. Class-Level Balance: Although all ensemble models (RF, XGBoost, CatBoost) achieved ~100% 

accuracy, the real advancement lies in the balanced detection of minority attack types, validated through per-class 

precision/recall improvements. 

2. Reduction of Misclassification Patterns: The confusion matrix analysis revealed that rare attacks were no longer 

absorbed into majority categories after SMOTE balancing. This correction eliminates blind spots that would otherwise 

persist in IoT intrusion detection systems. 
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3. Validation of Enhanced SMOTE: The superior performance on Classes 4 and 5, which initially had poor recall and F1-

scores, validates the design of the customized SMOTE. Unlike standard SMOTE, the enhanced method generated synthetic 

samples with adjustable neighbor counts and interpolation factors, preventing overfitting while enriching the minority 

decision space. 

 

These results are the best; the reasons are clear below: 

 Significant feature reduction: The feature selection process using GWO reduced the dimensionality from 32 to 21 

features, making the model both efficient and easier to interpret. 

 Strong and stable model performance: All three ensemble models (RF, XGBoost, and CatBoost) maintained excellent 

stability and accuracy across all classes. 

 Near-perfect accuracy for RF and XGBoost: Both models consistently reached ~100% accuracy, which is exceptionally 

rare in IoT IDS applications. 

 Improved CatBoost performance: CatBoost showed notable gains in detecting minority attack classes, with marked 

increases in precision and recall, confirming the effectiveness of the applied modifications. 

 Final model ranking: As illustrated in Table XII, the recommended order of deployment is RF first, XGBoost second, 

and CatBoost third. 

 Practical deployment readiness: With only 21 features and almost perfect classification results, the proposed system 

offers a fast, effective, and ready-to-use model for IoT intrusion detection. 

 
TABLE XII. THE FINAL RANKING OF MODELS BY PERFORMANCE AND QUALITY. 

 

Ranking Model 
Number of 

Features 

Performance 

(Accuracy) 
Notes 

🥇 1 RF 21 1.00 ✅ 
It was a perfect performance, the best overall 

 

🥈 2 XGBoost 21 1.00 ✅ 
It was a very excellent performance, like RF 

 

🥉 3 CatBoost 21 1.00 ✅ 
Clear improvement, very excellent performance 

 

4 Decision Tree 21 1.00 ✅ 
Very good performance 

 

5 SVM 21 0.99 ✅ 
Very good performance 

 

6 Logistic Regression 21 0.98 ⚠️ Relatively lower performance than other models 

 

8.6 Discussion  

The integration of the Grey Wolf Optimizer for feature selection significantly enhanced model efficiency and reduced 

computational complexity by selecting only 21 optimal features from the original dataset. Combined with customized 

SMOTE oversampling and refined hyperparameter tuning, the detection accuracy of the RF, XGBoost, and CatBoost 

classifiers improved dramatically, indicating exceptional potential for real-world IoT cyberattack detection scenarios. 

Nevertheless, the achievement of 100% accuracy across multiple classifiers warrants careful interpretation. While feature 

reduction and improved data balancing mitigated some risk of overfitting, perfect accuracy may still reflect dataset-

specific optimization rather than guaranteed generalization. In real-world IoT deployments, factors such as noisy data, 

evolving attack strategies, and resource limitations often reduce performance. Related high-performing IDS frameworks 

emphasize that even when benchmark results approach perfection, rigorous validation across diverse conditions is 

essential to ensure robust applicability.  
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8. CONCLUSION  

 
This research presents a comprehensive and effective framework for cyber-attack detection in IoT networks, addressing 

key challenges such as high-dimensional data and class imbalance. By integrating GWO for optimal feature selection and 

an enhanced version of SMOTE, the proposed methodology significantly improves classification accuracy and 

generalization while reducing computational complexity. Experimental evaluation on the RT-IoT2022 dataset 

demonstrated that ensemble classifiers, particularly RF, XGBoost, and CatBoost, achieved near-perfect accuracy (100%) 

using only 21 optimally selected features. Although these results highlight the strong potential of metaheuristic-based 

feature selection and customized oversampling, achieving perfect accuracy also raises the possibility of overfitting to 

specific dataset characteristics. Therefore, caution is required when extending the findings to real-world IoT scenarios. 

Future research should prioritize testing under heterogeneous network conditions, cross-dataset validation, and 

deployment in resource-constrained environments to confirm scalability and resilience. Emphasis will also be placed on 

real-time adaptation and explainable AI to strengthen trust and transparency in mission-critical IoT security systems. 
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