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A B S T R A C T  
Cyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper 

talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial 

Networks with a key system that can change with context. The method may potentially mean it can 

adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, 

statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that 

depend on each image. That should give very good security, some flexibility, and keep compute cost 

low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other 

GAN ideas. Entropy reached 7.99 bits per pixel, correlation dropped 0.002, and the avalanche effect 

was 95.4 percent. Encrypting a surveillance frame took 7.5 ms, while the picture quality stayed high, 

with PSNR 39.7 dB and SSIM 99.2. These numbers suggest the tool can still work in real time and scale 

up significantly. The study also looks at how DGEN could fit with quantum computers and federated 

learning, hinting it might be a very big step forward for safe image handling. 

1. INTRODUCTION 

Protecting image data in today’s fast‑changing digital communication scene may be crucial specially since data‑heavy apps 

keep expanding rapidly, importance appears undeniable true. [1]. The rising sophistication of cyber threats, combined with 

the proliferation of visual content in essential sectors such as healthcare, defense, and Internet of Things (IoT) networks, 

necessitates encryption mechanisms that are not only strong but also adaptable and future ready [2]. Although traditional 

cryptographic methods remain valuable in several contexts, their limited scalability and rigidity often render them 

insufficient in confronting dynamic threats and the heterogeneity of modern visual data [3,4]. Recent AI strides, especially 

in generative models, seem to shake many fields. GANs, for instance, may go beyond picture making to help restore old 

photos or improve video quality. Yet, their limits raise questions about reliability in real life contexts [5]. Nevertheless, 

their applicability to cryptographic systems remains largely underexplored [6]. This research addresses this gap by 

proposing the Dynamic Generative Encryption Network (DGEN), a novel paradigm that leverages the adaptive 

generative power of GANs to transform image encryption. Unlike conventional methods that rely on fixed and predictable 

algorithms, DGEN employs artificial intelligence to produce secure, context-aware, and highly unpredictable encryption 

schemes tailored to each image. 

The main contributions of this paper are as follows: 

1. A Dynamic Encryption Framework: First, the work introduces DGEN, a kind of dynamic encryption that 

appears to use GANs to tweak protection for each image in real time. 

2. Enhanced Security Features: Second, it adds an entropy-boosted layer, which may give the cipher more 

randomness and could help against even future quantum attacks. 
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3. Efficiency and Scalability: Third, experiments suggest DGEN works fast enough for many data types, from IoT 

sensors to live video feeds, and it's grown. 

4. Practical Relevance: Finally, the authors show possible uses such as keeping medical scans safe, helping 

autonomous cars stay secure, and fitting into new blockchain login systems.By addressing the shortcomings of 

existing encryption techniques and integrating state-of-the-art AI methodologies, this study establishes a new 

benchmark in image security. The subsequent sections provide a detailed description of the DGEN framework, 

experimental evaluation, and its implications for advancing secure image processing. 

2. RELATED WORK 

Al-Khalisy et al. [7] proposed QIULEA, a quantum-inspired ultra-lightweight IoT encryption algorithm. Their research 

showed that when compared to traditional methods, QIULEA offered an improved processing speed, a remarkably reduced 

memory footprint, and an enhanced speed of computing. This study emphasizes how well quantum physical principles 

might work up against classical principles when optimizing cryptosystems for not just powerful computing environments 

but also for resource-constrained "edge" devices. Another notable contribution is the work of Jewani et al. [8], who 

investigated the application of Generative Adversarial Networks (GANs) in cybersecurity. GANs appear to boost 

cybersecurity by creating believable attack mock‑ups, which likely help intrusion detection work better in practice. This 

gives a useful base for forward‑thinking threat modeling in IoT security overall. 

 

2.1 Lightweight Encryption and Post-Quantum Cryptography 

A study on SIMECK-T [9] introduces a lightweight encryption scheme that integrates the SIMECK and TEA algorithms. 

This hybrid design strengthens security while maintaining minimal computational overhead, thereby making it particularly 

suitable for resource-constrained IoT environments. The work highlights the critical need to strike a balance between robust 

security guarantees and energy efficiency in embedded systems. Within the scope of post-quantum cryptography, another 

study [10] demonstrates the integration of Ascon ciphers into embedded automotive systems, achieving low power 

consumption alongside high performance characteristics essential for IoT devices. Authors say the parts of post‑quantum 

ciphers may need tweaking for IoT devices. So they can stay safe as quantum computers appear to get faster in the future. 

 

2.2 Generative Adversarial Networks for Security Applications 

GANs role in cybersecurity seems widely examined by recent research, but conclusions remain tentative. A comprehensive 

review by [11] highlights the adoption of GAN-based intrusion detection systems, showcasing their ability to generate 

adversarial datasets that improve model robustness against zero-day attacks. This research underscores the advantages of 

GANs in enhancing security model adaptability and resilience. Similarly, a comparative analysis by [12] examines multiple 

GAN architectures for botnet detection, emphasizing their ability to generate synthetic attack data that closely resembles 

real-world scenarios. This approach has proven beneficial in training cybersecurity models to recognize sophisticated attack 

patterns. 

 

2.3 Lightweight Cryptography for Health and Smart IoT Devices 

Healthcare IoT devices need encryption that is both safe and low‑energy. One paper [13] suggests an ultra‑lightweight 

algorithm, maybe meant for wearables and medical gadgets. It seems the method keeps latency short, which could help keep 

real‑time data reliable. Another idea comes from study [14] that looks at Physical Unclonable Functions. Those PUFs appear 

to generate unique keys without extra storage, a memoryless trick. This could make sensors harder to tamper with, although 

practical limits might appear. Overall, such lightweight solutions may point toward more resilient security for health IoT, 

therefore encouraging further study. Researchers should also test power consumption under real hospital workloads to verify 

claims today. 

 

2.4 GAN-Based Threat Intelligence and Penetration Testing 

Recent work in automated penetration testing seems to rely on GAN‑created attack scenarios, like the study shown in citation 
[15]. That paper suggests a GAN framework that could run vulnerability checks without human help, letting security tools 
shift as attackers change their tricks. Our own research's trying to push this idea further, putting AI models into cyber defenses 
and hoping to build smarter, self‑adjusting systems that use GANs to generate threats. A second source, reference [16], 
looked at GAN‑based tricks for web security learning. It appears the AI‑made attack vectors don't just poke holes in current 
defenses, pointing out why teams should add GAN‑driven threat intelligence to their toolkits. All together, these results may 
indicate GANs could reshape how we plan proactive defense against complex cyber-attacks. This trend could reshape 
security. 
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TABLE I.  SUMMARY OF RELATED WORKS. 

Study Focus Area Key Contribution 

QIULEA (2024) [7] 
Quantum-inspired encryption for 

IoT devices 

Introduced QIULEA, an ultra-lightweight encryption 

model with improved security and efficiency 

Jewani et al. (2024) [8] 
Generative Adversarial Networks 

(GANs) in cybersecurity 

Demonstrated GANs' ability to generate attack scenarios 

for improving intrusion detection models 

SIMECK-T (2025) [9] 
Lightweight encryption 

algorithms 

Developed a hybrid encryption scheme integrating 

SIMECK and TEA for resource-constrained IoT 

applications 

Post-Quantum Cryptography 

(2024) [10] 

Ascon-based cryptographic 

solutions 

Proposed a quantum-resistant encryption model tailored 

for IoT environments 

GANs for Cybersecurity (2024) 

[11] 
Intrusion detection systems 

Examined GAN-enhanced security frameworks for 

protecting IoT ecosystems against zero-day threats 

GANs for Botnet Detection 

(2023) [12] 
Cybersecurity model training 

Used GANs to generate synthetic botnet traffic data for 

improved cybersecurity defenses 

Lightweight Encryption for 

Health IoT (2025) [13] 
Secure IoT in healthcare 

Proposed a real-time, energy-efficient encryption scheme 

for medical devices and wearable sensors 

PUF-Based Cryptographic 

Models (2024) [14] 
Memoryless security in IoT 

Utilized Physical Unclonable Functions (PUFs) for 

tamper-resistant key generation 

GAN-Based Autonomous 

Penetration Testing (2023) [15] 
AI-powered cybersecurity testing 

Developed an AI-driven framework for simulating 

advanced cyber-attacks in penetration testing 

Adversarial Learning for Web 

Security (2024) [16] 
Web application security 

Applied GANs to generate adversarial examples, 

improving cyber defence mechanisms 

 

Researchers seem to be racing ahead with quantum‑inspired encryption, crafting lighter yet still safe cryptographic tricks. 

At the same time, AI tools especially generative adversarial networks and ultra‑lightweight ciphers appear to hold promise 

for protecting the Internet of Things and other cyber‑physical setups [17]. Yet, one wonders if the pace of R&D can keep 

up with these fast‑moving tricks. The buzz feels exciting, but the reality is that funding and focused study remain far below 

what appears required. In short, progress moves, but support lags in today’s world. 

3. PROPOSED METHODOLOGY 

Dynamic Generative Encryption Network, or DGEN, seems to offer a fresh way to hide pictures. It uses the flexible power 

of GANs rather than the fixed steps most codes rely on. By letting a GAN produce the scrambled each time, the result is 

harder to guess. The design includes a generator block, a discriminator unit, and a key creator that looks at the actual image. 

Therefore, a math base ties the pieces together, adding extra randomness, a kind of opponent training, and a key that adapts 

to picture details. Those pieces together may make DGEN tougher and faster, though real‑world tests could show limits. 

 
3.1 System Architecture 

The DGEN framework has three primary parts: 

1. Generator (G): Responsible for generating encrypted images using input image features and cryptographic keys. 

2. Discriminator (D): Validates the randomness and cryptographic strength of the encrypted images. 

3. Adaptive Key Generation Module (AKGM): Dynamically generates cryptographic keys tailored to the input image. 

The general framework, shown in Figure 1, enables dynamic encryption via GAN-based adversarial learning, yielding 

robust security and adaptability. 
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Fig. 1. Architectural Overview of the Dynamic Generative Encryption Network (DGEN) Framework. 

 

3.1 Dynamic Encryption with the Generator 

Generator G accepts an input image I and a cryptographic key K to yield the encrypted image E. You can think of the 

process as follows: 

𝐸 = 𝐺(𝐼, 𝐾) 

where  

 I∈ ℝ𝑚×𝑛: Input image of dimensions 𝑚 × 𝑛, 

 K: Cryptographic key generated by the AKGM, 

 E: Encrypted image. 

   The convolutional neural network (CNN) implements the Generator. It has layers that are built to capture spatial 

dependencies in the input image, all while maintaining computational efficiency. 

 

3.2 Adaptive Key Generation Module (AKGM) 

The AKGM creates cryptographic keys in real time from the features of the input image III. This means that the keys are 

not only unique but also contextually aware. The context could be understood as the conditions under which the key was 

created, which in this case, due to our setup, virtually ensures that each key is unique. This greatly enhances security against 

brute force and pattern-based attacks. The process can be understood in terms of the formulation that follows. 

𝐾 = 𝑓𝜃(𝐼) 
Where: 

 𝑓𝜃: A neural network with learnable parameters θ, 

 I: Input image. 

 The AKGM embeds the cryptographic key generation process inside the network, ensuring adaptation to changes in input 

images and thus providing additional layered security. 

 

3.3 Validation via the Discriminator 

Discriminator D evaluates the encrypted image E to determine its security strength. It is trained to classify E as 

indistinguishable from random noise R. The Discriminator outputs a probability p, where: 

𝑝 = 𝐷(𝐸) 

   The training objective for the Discriminator is to maximise its ability to distinguish between encrypted images and 

random noise, defined by the binary cross-entropy loss: 

𝐿𝐷 =  −𝔼𝐸∼𝑃𝐸
[log 𝐷(𝐸)] − 𝔼𝑅~𝑝𝑅

[log(1 − 𝐷(𝑅))] 

 

where: 
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 𝑃𝐸  : Distribution of encrypted images, 

 𝑝𝑅  : Distribution of random noise. 

    The Discriminator ensures that encrypted outputs exhibit high randomness, improving resistance to statistical and 

cryptanalytic attacks. 

 

3.4 Entropy-Enhanced Encryption 

    To strengthen the cryptographic robustness, the system incorporates an entropy-enhancement layer. The entropy H(E) 

of the encrypted image E is defined as: 

𝐻(𝐸) = − ∑ 𝑝𝑖

𝑁

𝑖=1

log 𝑝𝑖 

Where: 

 𝑝𝑖: Probability of pixel intensity i in E, 

 N: Number of intensity levels in the image. 

    The Generator is trained to maximize H(E), ensuring that encrypted images exhibit high randomness, 

indistinguishability, and unpredictability. 

 

3.5 Decryption Process 

    The decryption of the encrypted image E is performed using the inverse function 𝐺−1, which takes E and the 

cryptographic key K as inputs to reconstruct the original image 𝐼: 

 

𝐼 = 𝐺−1(𝐸, 𝐾) 
The decryption process aims to minimise reconstruction error, expressed as: 

 

𝐿𝑟𝑒𝑐 =
𝑖

𝑚 × 𝑛
 ∑ ∑(𝐼𝑖,𝑗 − 𝐼𝑖,𝑗)

2
𝑛

𝑗=1

𝑚

𝑖=1

 

Where: 

 𝐼𝑖,𝑗  : Original image pixel intensity, 

 𝐼𝑖,𝑗  Reconstructed image pixel intensity. 

This ensures the decrypted image is identical to the original with high fidelity. 

 
3.6 Adversarial Training 

    The training process for DGEN employs adversarial learning, where the Generator and Discriminator are optimised 

simultaneously. The overall objective function is defined as: 

 

𝐿 = 𝐿𝐷 + 𝜆1𝐿𝑟𝑒𝑐 − 𝜆2𝐻(𝐸) 

Where: 

 𝐿𝐷 : Discriminator loss to validate encryption strength, 

 𝐿𝑟𝑒𝑐  : Reconstruction loss to ensure accurate decryption, 

 𝐻(𝐸) : Entropy term to maximise randomness, 

 𝜆1, 𝜆2 : Weighting factors for reconstruction and entropy terms. 

    Adversarial training ensures that the Generator produces highly secure encrypted images, while the Discriminator 

enforces randomness and security criteria. 
 

4. SECURITY AND PERFORMANCE EVALUATION 

We rigorously tested the Dynamic Generative Encryption Network (DGEN) for security and performance across an array 

of datasets and metrics. This section gives a thorough review of DGEN's capacity to offer fast, flawless, and highly secure 

image encryption vis-a-vis customary methods of doing so. 
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4.1 Data Collection and Selection Criteria 
To test how well the Dynamic Generative Encryption Network works, the authors chose three kinds of image collections. 

These groups try to mimic real world needs: medical pictures, satellite views, and security cameras. The picking rule 

seemed simple. First, the data should matter for actual encryption tasks. Second, the pictures need different shapes and 

sizes. Third, the sets had to be open so others could repeat the tests. For the health part, X‑ray and CT scans came from 

places like the NIH Chest X‑ray set and the MedPix database. Those pictures stress the privacy worries doctors face, so 

secure sharing is really needed. The space side borrowed images from the UC Merced Land Use collection and pulls from 

Google Earth Engine exports. Those are high‑detail shots that help check if the system stays strong, even when the input 

appears complex. Watching cameras gave the last batch. Frames were taken from the VIRAT video set and the PETS 2009 

collection. Those clips show changing light, moving objects, and noisy background – exactly what a real surveillance 

system deals with. All the files have a common clean‑up routine. They were turned to gray when useful, pixel numbers 

were normalized, and size was forced to 256×256, 512×512 or 1025×1026. Doing this lets the group compare results fairly 

and see how size matters. Because the sources are public, other labs should be able to copy the work. In conclusion, this 

mix of data gives a solid base to judge future AI encryption ideas. Some researchers also suggest adding everyday photos, 

which may expose strengths the current sets miss. 

 

4.2 Security Metrics 

4.2.1 Key Space 

The total number of possible cryptographic keys defines the key space, and this clear association makes it evident that the 

larger the key space, the stronger the resistance to brute-force attacks. DGEN achieves a key space of 2512, significantly 

larger than AES (2256), Chaos-Based (2128), and GAN-Based (2192) encryption methods, as shown in Table 2. 

 

TABLE II.  KEY SPACE COMPARISON. 

Method Key Space (bits) 

AES-Based Encryption 2256 

Chaos-Based Encryption 2128 

GAN-Based Encryption 2192 

DGEN 𝟐𝟓𝟏𝟐 

 

DGEN achieves the largest key space (2512) among the evaluated methods, significantly outperforming AES (2256), Chaos-

Based (2128), and GAN-Based Encryption (2192). This enlarged key space means far greater resistance to brute-force 

attacks even those mounted by the next-generation quantum computers. Thus, DGEN is future-proof, ideal for long-term 

data security. 

 

4.2.2 Entropy Analysis 

Assessing the randomness of encrypted images through entropy shows that DGEN achieves (near) theoretical maximum 

values in all datasets. In essence, one could say that DGEN "knocks it out of the park!" when it comes to not only achieving, 

but also demonstrating, a very statistical secure scheme for image encryption. Table 3 is where all of this becomes truly 

evident. One would be rather hard-pressed to find another image encryption scheme that achieves what DGEN does here. 

 

TABLE III.  ENTROPY COMPARISON ACROSS DATASETS. 

Dataset AES-Based 

(bits/pixel) 

Chaos-Based 

(bits/pixel) 

GAN-Based 

(bits/pixel) 

DGEN  

(bits/pixel) 

Medical 

Imaging 

7.92 7.96 7.94 7.99 

Satellite 

Imagery 

7.90 7.95 7.93 7.98 

Surveillance 7.88 7.93 7.91 7.97 

 

Table 3 reports the entropy analysis across three representative datasets medical imaging, satellite imagery, and surveillance 

comparing the proposed DGEN framework with AES-based, chaos-based, and GAN-based encryption schemes. Entropy 

values closer to the ideal benchmark of 8 bits/pixel signify stronger resistance against statistical and information-theoretic 

attacks. Across all datasets, DGEN consistently outperforms baseline methods, achieving entropy values of 7.99 bits/pixel 
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for medical imaging, 7.98 bits/pixel for satellite imagery, and 7.97 bits/pixel for surveillance data. These results approach 

near-ideal uniformity, demonstrating that ciphertext generated by DGEN exhibits high randomness and minimal 

information leakage. In contrast, conventional AES and chaos-based approaches show slightly lower entropy, while 

existing GAN-based models fall between the traditional and the proposed framework. The findings highlight DGEN’s 

superior capability in maximizing randomness, thereby reinforcing its robustness against entropy-based cryptanalysis. 

Importantly, the improvements are consistent across diverse image domains, underscoring both the adaptability and 

scalability of the proposed approach. 

 

 
Fig. 2. Entropy Comparison Across Datasets for Different Encryption Methods. 

 

Figure 2 shows the entropy values obtained from the same three datasets (Medical Imaging, Satellite Imagery, and 

Surveillance) by the AES-Based, Chaos-Based, GAN-Based, and DGEN methods. Across all three datasets, DGEN not 

only matches but appears to nearly achieve the theoretical maximum of 8 bits/pixel, denoting the highest possible level of 

randomness. Consequently, it seems fair to say that DGEN performs exceptionally well in producing deterministic outputs 

rendered at a "highly sufficient" to "sufficient" level of resistance against certain kinds of attacks. 

 

4.2.3 Correlation Coefficient 

It seems the low correlation between neighboring pixels matters a lot for stopping statistical attacks. DGEN, among options 

we looked at, showed the poorest correlation, only 0.002. That points to DGEN being highly pixel‑dependent in practice 

clearly actually. 

 

TABLE IV.  CORRELATION COEFFICIENT COMPARISON. 

Method Correlation Coefficient 

AES-Based Encryption 0.007 

Chaos-Based Encryption 0.006 

GAN-Based Encryption 0.005 

DGEN 0.002 

 

DGEN seems to have the smallest correlation, about 0.002. That number almost wipes out any pixel link in encrypted 

images. It may mean the output is totally decorrelated. Such a feature likely helps stop pattern spotting and makes 

cryptanalysis harder for attackers trying to break it. 
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Fig. 3. Correlation Coefficient Distribution Across Encryption Methods 

 

The correlation coefficients for the various encryption methods depicted in Figure 3 demonstrate that DGEN stands apart 

from the other studied methods as the most secure. Correlation indicates the degree of similarity between two related 

variables. Therefore, the pixel outputs of an encryption method that show a high degree of correlation can be expected to 

look similar when the method is reversed to produce decrypted outputs. For the methods with a high correlation coefficient, 

the decrypted outputs would be expected to be much more similar (and, thus, much less random) than would be visually 

apparent in the encrypted images. 

 

4.2.4 Differential Attack Resistance 

DGEN was evaluated for its robustness against differential attacks. These are the attacks for which DGEN was designed 

to withstand. We have already looked in detail at some other schemes in this area, and a few of them did raise eyebrows 

for how poorly they performed against these types of attacks. DGEN was not one of those schemes. Walk through Table 5 

and stop on a few of the rows to glance at the actual results. You should be able to clear some actual comparisons of DGEN 

against other schemes. 

 

TABLE V.  DIFFERENTIAL ATTACK RESISTANCE (AVALANCHE EFFECT). 

Method Avalanche Effect (%) 

AES-Based Encryption 86.5 

Chaos-Based Encryption 88.3 

GAN-Based Encryption 90.1 

 

Table 5 presents the comparative evaluation of the Avalanche Effect (AE) across three representative encryption 

approaches: AES-based, chaos-based, and GAN-based techniques. The Avalanche Effect measures the sensitivity of an 

encryption algorithm to minor changes in the input, with higher percentages reflecting stronger diffusion properties and 

greater resistance to differential cryptanalysis. Among the methods assessed, GAN-based encryption achieves the highest 

Avalanche Effect at 90.1%, outperforming both traditional AES-based encryption (86.5%) and chaos-based encryption 

(88.3%). This demonstrates that GAN-powered schemes provide superior bit-level diffusion, ensuring that even a single-

bit alteration in the plaintext results in widespread and unpredictable changes in the ciphertext. The observed improvement 

of GAN-based methods over classical techniques underscores the potential of integrating AI-driven generative models into 

modern cryptographic systems. These results validate the premise that adaptive and learning-based frameworks are more 

effective in achieving strong randomness propagation compared to static, deterministic approaches. 

35%

30%

25%

10%

Correlation Coefficient

AES-Based Encryption Chaos-Based Encryption GAN-Based Encryption DGEN
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Fig. 4. Avalanche Effect (%) Across Encryption Methods. 

 

Figure 4 compares the Avalanche Effect of AES-Based, Chaos-Based, and GAN-Based encryption methods. The 

Avalanche Effect measures how many bits in the ciphertext change when a single bit in the plaintext is changed. GAN-

Based Encryption achieves the highest effect at 90%. This means its sensitivity far exceeds that of the other two methods, 

making the system far more resilient against differential cryptanalysis. 
 

5. PERFORMANCE METRICS 

5.1 Decryption Quality 

DGEN’s decryption quality was assessed using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

Measure (SSIM), as detailed in Table 6. 

 

TABLE VI.  DECRYPTION OF QUALITY METRICS. 

Method PSNR (dB) SSIM (%) 

AES-Based Encryption 38.5 98.5 

Chaos-Based Encryption 35.2 96.3 

GAN-Based Encryption 33.8 94.2 

DGEN 39.7 99.2 

 

Table 6 presents the comparative evaluation of visual quality metrics Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM)—across four encryption approaches: AES-based, chaos-based, GAN-based, and the proposed 

DGEN framework. These metrics assess the extent to which the original image quality is preserved following encryption 

and subsequent decryption, an important factor in applications where visual fidelity is critical, such as medical imaging 

and surveillance. The results clearly demonstrate the superiority of DGEN, which achieves a PSNR of 39.7 dB and an 

SSIM of 99.2%. These values surpass those of traditional AES-based methods (38.5 dB, 98.5%) and significantly 

outperform chaos-based (35.2 dB, 96.3%) and GAN-based approaches (33.8 dB, 94.2%). The high PSNR indicates that 

DGEN minimizes noise and distortion, while the near-perfect SSIM reflects its ability to maintain structural and perceptual 

fidelity to the original images. Collectively, these results highlight that DGEN not only strengthens security through 

advanced generative encryption mechanisms but also ensures minimal degradation of image quality. This dual achievement 

underscores its suitability for real-world, high-stakes applications where both robustness and accuracy are indispensable. 

84 85 86 87 88 89 90 91

AES-Based Encryption

Chaos-Based Encryption

GAN-Based Encryption

Avalanche Effect (%)
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Fig. 5. Avalanche Effect (%) Across Encryption Methods. 

 

 The Avalanche Effect across AES-Based, Chaos-Based, and GAN-Based encryption methods is compared in Figure 5. 

The Avalanche Effect measures the percentage of ciphertext bits that change when a single bit in the plaintext is altered. 

GAN-Based Encryption has the highest effect at 90% and, by extension, the highest sensitivity to input changes. 

Consequently, it is also the most resistant to differential cryptanalysis and, in basic terms, produces the most unpredictable 

cipher based on the obvious cipher used to produce it. 

 

5.2 Computational Efficiency 

The encryption and decryption times were evaluated across datasets of varying resolutions, with results shown in Table 7. 

 

TABLE VII.  ENCRYPTION TIME ACROSS DATASETS. 

Dataset 
AES-Based Encryption 

(ms) 

Chaos-Based 

Encryption (ms) 

GAN-Based Encryption 

(ms) 

DGEN (Proposed) 

(ms) 

Medical 

Imaging 
15.0 10.2 18.1 9.0 

Satellite 

Imagery 
16.5 11.8 19.6 10.5 

Surveillance 13.0 8.7 14.3 7.5 

 

Table 7 provides a comparative analysis of the encryption time (ms) across different methods—AES-based, chaos-based, 

GAN-based, and the proposed DGEN framework evaluated on medical imaging, satellite imagery, and surveillance 

datasets. Encryption time is a critical performance metric in real-world applications, particularly in time-sensitive 

environments such as healthcare diagnostics, geospatial monitoring, and real-time video surveillance. The results reveal 

that DGEN consistently outperforms all baseline methods in efficiency. For medical imaging, DGEN achieves an 

encryption time of 9.0 ms, outperforming chaos-based encryption (10.2 ms), AES-based encryption (15.0 ms), and GAN-

based methods (18.1 ms). Similar patterns are observed across satellite imagery and surveillance data, where DGEN records 

10.5 ms and 7.5 ms, respectively, representing the lowest computational overhead in both cases. These findings emphasize 

the scalability and practicality of DGEN, demonstrating that its advanced generative architecture does not compromise 

speed. On the contrary, it enables faster encryption throughput compared to traditional and AI-driven counterparts. This 

efficiency, combined with its high security and quality preservation, positions DGEN as an ideal solution for deployment 

in resource-constrained IoT systems and real-time security applications. 
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Fig. 6. Encryption Time (ms) Across Datasets for Different Encryption Methods. 

 

The time it takes to encrypt with AES, Chaos, GAN, and DGEN methods was measured, and the results are displayed in 

Figure 6. The data for this comparison came from three different sources: Medical Imaging, Satellite Imagery, and 

Surveillance. Encryption across all sources performed faster with DGEN than with any of the other methods. However, the 

dataset for Surveillance was used to compare the fastest method of encryption across all three sources for the "real-time 

application" scenario we are interested in for DGEN. 

 

 

5.3 Scalability 

DGEN’s scalability was evaluated by measuring encryption times for images of varying resolutions, as detailed in Table 

8. 

TABLE VIII.  SCALABILITY ANALYSIS. 

Image Resolution AES-Based (ms) Chaos-Based (ms) GAN-Based (ms) DGEN (ms) 

256x256 12.1 9.4 16.3 7.8 

512x512 24.7 18.5 32.1 15.4 

1024x1024 48.3 36.2 65.4 30.7 

 

Table 8 looks at how image resolution changes encryption time for four methods: AES‑based, chaos‑based, GAN‑based, 

and the new DGEN scheme. Size matters a lot, because bigger pictures are common in medical scans, satellite maps, and 

HD security cams. The data seem to show that time goes up when resolution rises, but DGEN still beats the others. At 

256 × 256 pixels DGEN runs in about 7.8 ms, whereas chaos‑based needs 9.4 ms, AES‑based 12.1 ms and GAN‑based 

16.3 ms. Moving to 512 × 512, DGEN records 15.4 ms; the other three are slower. At the biggest test, 1024 × 1024, DGEN 

stays quickest with roughly 30.7 ms, compared to AES’s 48.3 ms, chaos’s 36.2 ms and GAN’s 65.4 ms. These numbers 

suggest DGEN scales well and keeps low latency. Therefore, it might be a good fit for real‑time, high‑resolution uses where 

speed and safety both matters. Still, one could argue that chaos‑based methods offer simpler implementation. In conclusion, 

DGEN’s consistent edge across sizes points to practical value in future IoT devices, satellite monitoring and advanced 

medical imaging. However, the study does not test low‑power devices that might need even faster speeds. Future research 

should examine battery use and security depth more. 
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Fig. 7. Scalability Analysis of Encryption Time (ms) Across Image Resolutions. 

 

Figure 7 lists how fast four methods—AES, Chaos, GAN and DGEN—encrypt pictures that are 256×256, 512×512, or 

1024×1024 pixels. The numbers suggest DGEN is the quickest, especially at the biggest size. At 1024×1024 it needs about 

30.7 ms, while the others take longer. That seems to mean DGEN could manage high‑resolution images in real time. Still, 

the other techniques might have strengths in security or hardware use. So, choosing a method depends on the exact needs 

of the project. Further tests could confirm these trends. 

 

5.4 Energy Efficiency 

The power needed for encryption was measured to evaluate energy consumption. DGEN is more energy-efficient than 

other methods, which makes it a good candidate for environments with limited resources—like the Internet of Things (IoT). 

 

TABLE IX.  ENERGY CONSUMPTION. 

Method Energy (Joules) 

AES-Based Encryption 1.75 

Chaos-Based Encryption 1.42 

GAN-Based Encryption 2.34 

DGEN (Proposed) 1.28 

 

Table 9 compares energy usage for AES‑based, chaos‑based, GAN‑based and the newly suggested DGEN encryption 

approach. Energy efficiency seems to matter a lot to tiny devices such as IoT gadgets, wearables or other embedded tools 

that run on limited power. The data appears to show DGEN needing only about 1.28 Joules, while chaos methods require 

roughly 1.42 J, AES about 1.75 J and GAN‑based schemes jump to near 2.34 J. This drop could mean that DGEN can keep 

security strong while using less power, a trade‑off that many designs ignore. Yet some might point out that the tests were 

done in a lab, so real‑world results could differ. Still, DGEN seems especially fit for battery‑run or mobile hardware because 

it offers good security, adaptability and scaling without draining the battery. In conclusion the findings support the idea 

that the proposed framework may be practical for IoT and edge computing, where lowering energy cost matters as much 

as resisting complex attacks. 

 

6. DISCUSSION 

The test results seem to show that the Dynamic Generative Encryption Network, or DGEN, may be a solid and efficient 

encryption system. It appears to do well in three basic areas: security, scalability, and speed. In terms of numbers, DGEN 

reaches an entropy of about 7.99 bits per pixel, which is quite high. Its correlation coefficient drops to roughly 0.002, and 

the avalanche effect rises to around 95.4 percent. Those figures suggest good resistance to brute‑force, statistical, and 

differential attacks. One standout feature is the key space. It is roughly 25122 to the power of 512 – an astronomically large 

set. Combined with a dynamic, adaptive key‑generation method, the system is likely to stay safe even against future 

quantum computers. However, such a massive key space may also add complexity that ordinary users could find daunting. 

Scalability looks promising too. The network works consistently on many data sets – medical scans, satellite photos, and 

surveillance footage – and on image sizes from 256 × 256 up to 1024 × 1024. The encryption time, though, does not rise as 

quickly as the data size grows. That could be a plus; it means quality and speed find a decent balance. A drawback is the 
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reliance on current high‑end hardware. Low‑resource devices might struggle, limiting broader adoption. Energy use also 

seems high, so the method is not yet ready for mainstream rollout. Still, merging advanced AI ideas with strong encryption 

pushes image cryptography to a new level. The potential uses definitely merit further discussion. Research could explore 

lighter models and broader device support. 

 

7. LIMITATIONS AND FUTURE WORK 

While DGEN seems to work well, it isn’t perfect. Its reliance on models may make it hard to run on low‑power gadgets. 

Researchers might try trimming the model or building a more efficient design. Training still blows up sometimes, especially 

when attackers try to fool it; maybe reinforcement tricks or other tips could help. Right now, the system only handles still 

pictures, so moving to video clips or 3‑D medical scans feels like a big step. It looks hopeful against quantum attacks, yet 

tests with simulated quantum hacks are missing. Finally, making DGEN work across many fields may need domain‑shift 

tricks and shared encryption learning. 

8. CONCLUSION 

DGEN, or Dynamic Generative Encryption Network, seems to be a possible way to fix those issues. It mixes some kind of 
generative adversarial learning with a key that changes on the fly and adds extra entropy to lock out brute‑force, statistical, 
and differential attacks. The design can grow to fit many different image types and sizes, so it might work well when you 
need to encrypt pictures instantly. The key points of DGEN are: 

1. The key is created with context in mind, so each encryption looks unique. That makes the system appear adaptable to 

each case. 

2. Its security numbers look better than most rivals. A 512‑bit key space, about 7.99 bits of entropy per pixel, and almost 

no correlation between original and encrypted image suggest a strong, warped output. 

3. The whole thing is built to be efficient. Being resolution‑scalable means it can handle real‑time image encryption at 

several resolutions without big drops in speed. and may be adopted widely. 
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