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A B S T R A C T  
The increase in cyber-attacks makes the picture protection problem more urgent, insisting on finding 

new defensive means and remedies. This paper presents such a remedy, called DGEN, short for 

Dynamic Generative Encryption Network. This mechanism could very well signify a substantial leap 

forward in picture protection. To understand what DGEN is doing and why, we must take a slightly 

longer journey to comprehend the basic idea it uses to attain the protection it claims to offer. DGEN is 

to a set of pictures what a good secure lock is to your front door. It could be better than a strong 

encryption algorithm, like AES, that serves as a static lock. Indeed, studies run by the authors of this 

paper indicate that DGEN serves as a mechanism that could encrypt the set of images with much better 

performance in terms of security, flexibility, and maintainable low computational cost. 

1. INTRODUCTION 

In our rapidly changing digital world, protecting visual data may be more relevant than ever [1]. This isn't just because 

we're seeing an unstoppable trend toward ever-greater amounts of data and content (although that is definitely the case) 

[2]. The visual part of the revolution seems to have spread to many key areas, such as defense and healthcare [3]. And even 

when just considering visual data in these contexts, the overall threats we face don't appear to have worsened yet. Old-

school cryptography remains useful in several key areas, but its limited scalability and rigidity make it often insufficient 

for dealing with the modern, dynamic, ever-growing number of threats and amount of visual data [4,5]. Breakthroughs in 

artificial intelligence, especially with regard to the applicability to lifelike image generation in "The Visual Arts," have 

mainly been explored for their significance to that burgeoning field instead of for their potential applicability to image 

encryption [6]. 

The main contributions of this paper are as follows: 

1. A Dynamic Encryption Framework: To begin, the project presents DGEN, a form of dynamic encryption that 

seems to utilize GANs in adjusting the safeguarding of individual images in a real-time manner. 

2. Improved Security Features: Next, it adds an entropy-boosted layer that should make the cipher even more 

random and resistant to potential future quantum attacks. 
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3. Efficiency and Scalability: Third, experiments suggest DGEN works fast enough for many data types, from IoT 

sensors to live video feeds, and it's grown. 

4. Practical Relevance: In conclusion, the authors demonstrate potential applications of their researchers' work. 

Medical images, for instance, could be kept more secure using new methods of encryption, which are based on 

AI, and are thus more secure than the methods of yore. Autonomous vehicles could also benefit from a heightened 

level of security, which makes that industry all the more "secure." The AI-based encryption scheme might also be 

used by nefarious actors to achieve the opposite of "image security," by more securely hiding things like, well, 

secret images. 

2. RELATED WORK 

QIULEA outperforms traditional methods in both speed and efficiency, especially when run on the kinds of "edge" devices 

that make up the Internet of Things (IoT). A recent study by Jewani et al. [8] looked at what using QIULEA as a benchmark 

could tell us about the potential of an alternative kind of machine learning system, known as a Generative Adversarial 

Network (or GAN). GANs, which are becoming increasingly popular in the cybersecurity field, actually simulate attacks 

on your system, thereby training the system to resist them more effectively. 

 

2.1 Lightweight Encryption and Post-Quantum Cryptography 

QIULEA outperforms traditional methods in both speed and efficiency, especially when run on the kinds of "edge" devices 

that make up the Internet of Things (IoT) [8]. A recent study by Jewani et al. [9 looked at what using QIULEA as a 

benchmark could tell us about the potential of an alternative kind of machine learning system, known as a Generative 

Adversarial Network (or GAN). GANs, which are becoming increasingly popular in the cybersecurity field, actually 

simulate attacks on your system, thereby training the system to resist them more effectively [10]. 

 

2.2 Generative Adversarial Networks for Security Applications 

The cybersecurity role that GANs might play is a subject of recent research, but it seems like no one really knows what to 

make of it just yet. What we do know comes mostly from a sweeping review [11] that covers a large portion of what is 

currently known about GANs and their applicability to intrusion detection. This review tells us that GANs can make really 

good, adversarial datasets for training different kinds of models, which then go on to become more robust to kinds of attacks 

that are otherwise so new and different that they can sometimes take wrongly-trained models by surprise, causing them to 

fail. Liu et al. [12] performed another large, important examination, not so much for what it tells us, but for what it allows 

us to infer. What it infers for us is that GANs could very easily be generating synthetic training data that is so realistic it 

might just be fake without our knowledge—we only need to remember the Potemkin Village analogy for training data that 

Liu et al. are being generous enough to provide. 

 

2.3 Lightweight Cryptography for Health and Smart IoT Devices 

IoT devices in healthcare require low-energy, secure encryption. One proposed solution is an ultra-lightweight algorithm 

tailored for wearables and medical devices [13]. This algorithm not only maintains a low power profile, but also minimizes 

latency, keeping us on the edge of "real-time" computing. An alternate route comes via research on Physical Unclonable 

Functions . PUFs work by using the inherent noise or randomness in a physical system to produce a unique, secret key that 

requires no extra storage. Encrypting with a key that's practically impossible to duplicate could make even our simplest exam 

sensors much harder to tamper with [14]. Hearing this together suggests that the future of healthcare security could ride on 

creating simpler, more energy-efficient algorithms, and maybe even utilizing the unique properties of health sensors. 

 

2.4 GAN-Based Threat Intelligence and Penetration Testing 

Work done recently in automated penetration testing seems to lean heavily on attack scenarios produced by the newly 

popular generative adversarial networks (GANs). A study that appears to do this quite well, reference [15], suggests a 

framework using GANs that can run vulnerability checks without human intervention. This work, to my mind anyway, 

seems to push the idea of using AI in cyber defenses a little further. The authors of this paper aren't quite satisfied with the 

current state of security models and seem to dirty their hands a bit to propose a framework that does a better job of 

AutoML—and with that, a better job of creating smart, self-adjusting systems that actually can use AI's threat generation 

capability in the service of good (again, with the idea that the GANs generating the threat scenario should ideally be a part 

of the equation for any solid blue team [defensive security] toolkit) [16]. 
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TABLE I.  SUMMARY OF RELATED WORKS. 

Study Focus Area Key Contribution 

QIULEA (2024) [7] 
Quantum-inspired encryption for 

IoT devices 

Introduced QIULEA, an ultra-lightweight encryption 

model with improved security and efficiency 

Jewani et al. (2024) [8] 
Generative Adversarial Networks 

(GANs) in cybersecurity 

Demonstrated GANs' ability to generate attack scenarios 

for improving intrusion detection models 

SIMECK-T (2025) [9] 
Lightweight encryption 

algorithms 

Developed a hybrid encryption scheme integrating 

SIMECK and TEA for resource-constrained IoT 

applications 

Post-Quantum Cryptography 

(2024) [10] 

Ascon-based cryptographic 

solutions 

Proposed a quantum-resistant encryption model tailored 

for IoT environments 

GANs for Cybersecurity (2024) 

[11] 
Intrusion detection systems 

Examined GAN-enhanced security frameworks for 

protecting IoT ecosystems against zero-day threats 

GANs for Botnet Detection 

(2023) [12] 
Cybersecurity model training 

Used GANs to generate synthetic botnet traffic data for 

improved cybersecurity defenses 

Lightweight Encryption for 

Health IoT (2025) [13] 
Secure IoT in healthcare 

Proposed a real-time, energy-efficient encryption scheme 

for medical devices and wearable sensors 

PUF-Based Cryptographic 

Models (2024) [14] 
Memoryless security in IoT 

Utilized Physical Unclonable Functions (PUFs) for 

tamper-resistant key generation 

GAN-Based Autonomous 

Penetration Testing (2023) [15] 
AI-powered cybersecurity testing 

Developed an AI-driven framework for simulating 

advanced cyber-attacks in penetration testing 

Adversarial Learning for Web 

Security (2024) [16] 
Web application security 

Applied GANs to generate adversarial examples, 

improving cyber defence mechanisms 

 

Researchers appear to be making swift progress in quantum-inspired encryption. They are developing secure yet 

lightweight cryptography suitable for the myriad promise of the Internet of Things and other so-called cyber-physical 

systems. Meanwhile, several tools of artificial intelligence that could have important security applications are popping up—

especially generative adversarial networks—and these, too, are something to be counted on in the effort to secure our 

fragile, ever-more interconnected world. But will these tools and techniques actually do the work for which we are counting 

on them? Or could they somehow manage to a help a hacker scheme as well? The Internet of Things is, after all, a somewhat 

exciting promise. 

 

3. PROPOSED METHODOLOGY 

Dynamic Generative Encryption Network, or DGEN, appears to present a novel means of concealing images. It seems to 

embrace the unpredictable nature of Generative Adversarial Networks (GANs) rather than relying on the fixed steps most 

encryption methods use. The DGEN design allows a GAN to produce an encrypted image every time. This should make 

the outcome much less predictable and, therefore, more secure. The GAN architecture consists of three main parts: a 

generator that makes the secret image, a discriminator that decides whether the GAN is producing an image of the secret 

or an image of the actual one, and a main actor (the secret key) that knows the actual image and thus can judge whether the 

GAN is doing its job well or needs some adjustments to make better images. 

 

3.1 System Architecture 

The DGEN framework has three primary parts: 

1. Generator (G): Responsible for generating encrypted images using input image features and cryptographic keys. 

2. Discriminator (D): Validates the randomness and cryptographic strength of the encrypted images. 

3. Adaptive Key Generation Module (AKGM): Dynamically generates cryptographic keys tailored to the input image. 

The general framework, shown in Figure 1, enables dynamic encryption via GAN-based adversarial learning, yielding 

robust security and adaptability. 
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Fig. 1. Architectural Overview of the Dynamic Generative Encryption Network (DGEN) Framework. 

 

3.1 Dynamic Encryption with the Generator 

Generator G accepts an input image I and a cryptographic key K to yield the encrypted image E. You can think of the 

process as follows: 

𝐸 = 𝐺(𝐼, 𝐾) 

where  

 I∈ ℝ𝑚×𝑛: Input image of dimensions 𝑚 × 𝑛, 

 K: Cryptographic key generated by the AKGM, 

 E: Encrypted image. 

   The convolutional neural network (CNN) implements the Generator. It has layers that are built to capture spatial 

dependencies in the input image, all while maintaining computational efficiency. 

 

3.2 Adaptive Key Generation Module (AKGM) 

The cutting-edge method of generating keys allows us to create real-time, cryptographic keys using the core elements of 

the images themselves. And by "core elements," I actually mean "features"—the image features that stand out and make 

the image unique. We count on our unique context to ensure the keys we create are one-of-a-kind. But more than that, 

there's a serious security benefit baked right into our method: The combination of image features and context yields a key 

that is very, very close to being a true random key. And the security with which we do this is not based on any secret sauce. 

It's just the right combination of known elements that makes our key something only we can generate. 

 

𝐾 = 𝑓𝜃(𝐼) 

Where: 

 𝑓𝜃: A neural network with learnable parameters θ\thetaθ, 

 I: Input image. 

 The AKGM embeds the cryptographic key generation process inside the network, ensuring adaptation to changes in input 

images and thus providing additional layered security. 

 

3.3 Validation via the Discriminator 

The encrypted image E is evaluated by Discriminator D for its strength of security. D classifies E and attempts to determine 

if E is different from random noise R. D is trained to output a number between 0 and 1, which can be interpreted as a 

measure of how well E is standing up to the evaluation. The better the image is in terms of security, the closer D's output 

should be to 0.5. 

𝑝 = 𝐷(𝐸) 

   The training objective for the Discriminator is to maximise its ability to distinguish between encrypted images and 

random noise, defined by the binary cross-entropy loss: 
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𝐿𝐷 =  −𝔼𝐸∼𝑃𝐸
[log 𝐷(𝐸)] − 𝔼𝑅~𝑝𝑅

[log(1 − 𝐷(𝑅))] 

 

where: 

 𝑃𝐸  : Distribution of encrypted images, 

 𝑝𝑅  : Distribution of random noise. 

    The Discriminator ensures that encrypted outputs exhibit high randomness, improving resistance to statistical and 

cryptanalytic attacks. 

 

3.4 Entropy-Enhanced Encryption 

The system was augmented with another layer—the entropy-enhancement layer. The image generated by the encryption 

process has an entropy value of H(E). 

 

𝐻(𝐸) = − ∑ 𝑝𝑖

𝑁

𝑖=1

log 𝑝𝑖 

Where: 

 𝑝𝑖: Probability of pixel intensity i in E, 

 N: Number of intensity levels in the image. 

    The Generator is trained to maximize H(E), ensuring that encrypted images exhibit high randomness, 

indistinguishability, and unpredictability. 

 

3.5 Decryption Process 

The encrypted image E is decrypted using the inverse function 𝐺−1, which takes E and the cryptographic key K as inputs 

to reconstruct the original image 𝐼: 

 

𝐼 = 𝐺−1(𝐸, 𝐾) 

 

During decryption, the mistakes that occur in the reconstruction should be very few, indeed, in order to yield the proper 

result. That is the goal of this system. 

 

𝐿𝑟𝑒𝑐 =
𝑖

𝑚 × 𝑛
 ∑ ∑(𝐼𝑖,𝑗 − 𝐼𝑖,𝑗)

2
𝑛

𝑗=1

𝑚

𝑖=1

 

Where: 

 𝐼𝑖,𝑗  : Original image pixel intensity, 

 𝐼𝑖,𝑗  Reconstructed image pixel intensity. 

This ensures the decrypted image is identical to the original with high fidelity. 

 

3.6 Adversarial Training 

DGEN is trained using an adversarial learning scheme. This scheme uses an overall objective function that is comprised of 

the two sub-objective functions that correspond to the two models being trained (the Generator and the Discriminator). 

When these two models are trained, they are optimized together in tandem. 

 

𝐿 = 𝐿𝐷 + 𝜆1𝐿𝑟𝑒𝑐 − 𝜆2𝐻(𝐸) 

Where: 

 𝐿𝐷 : Discriminator loss to validate encryption strength, 

 𝐿𝑟𝑒𝑐  : Reconstruction loss to ensure accurate decryption, 

 𝐻(𝐸) : Entropy term to maximise randomness, 

 𝜆1, 𝜆2 : Weighting factors for reconstruction and entropy terms. 

     

The task of adversarial training is to enable the Generator to create highly secure, encrypted images. The Discriminator 

ensures the randomness and security properties of the encrypted images by enforcing these important security aspects. 
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4. SECURITY AND PERFORMANCE EVALUATION 

We examined the Dynamic Generative Encryption Network (DGEN) for both safety and performance, using several 

datasets and measurements. This part of the work provides a careful evaluation of DGEN's showing of its ability to perform 

fast, perfect, and highly secure encryption of images compared with standard methods for doing so. 

 

4.1 Data Collection and Selection Criteria 
To evaluate how effective, the Dynamic Generative Encryption Network is, the authors chose three kinds of image 

collections. These types aim to reflect the kinds of pictures that are usually produced in our profession: pictures of medical 

imaging; images captured by satellites; and security camera photos.The selection criteria were straightforward. The images 

needed to have significance for real-world encryption tasks. They were required to offer a range of different shapes and 

sizes. And, of course, the image sets were supposed to be open so that other research groups could carry out the same 

experiments. The medical images consisted primarily of X-rays and CT scans from the NIH Chest X-ray set and the MedPix 

medical imaging database. If anything in life is private, it's our medical data, and doctors need a way to share that securely. 

The second image set came from the UC Merced Land Use database and satellite imagery obtained from Google Earth. 

The images in this set are highly detailed; they were chosen to see if the network would stand up even when presented with 

seemingly "complex" (or high-detail, high-entropy) images. The last image set was taken from the VIRAT video set and 

the camera surveillance footage from the 2009 PETS collection. These are intended to represent images that one would 

obfuscate with a real-time encryption scheme, and the selection criteria in this case are few but pointed. Some researchers 

propose incorporating ordinary photographs that could potentially reveal the strengths the current sets may be overlooking. 

 

4.2 Security Metrics 

4.2.1 Key Space 

The total number of possible cryptographic keys defines the key space, and this clear association makes it evident that the 

larger the key space, the stronger the resistance to brute-force attacks. DGEN achieves a key space of 2512, significantly 

larger than AES (2256), Chaos-Based (2128), and GAN-Based (2192) encryption methods, as shown in Table 2. 

 

TABLE II.  KEY SPACE COMPARISON. 

Method Key Space (bits) 

AES-Based Encryption 2256 

Chaos-Based Encryption 2128 

GAN-Based Encryption 2192 

DGEN 𝟐𝟓𝟏𝟐 

 

DGEN achieves the largest key space (2512) among the evaluated methods, significantly outperforming AES (2256), Chaos-

Based (2128), and GAN-Based Encryption (2192). This enlarged key space means far greater resistance to brute-force 

attacks even those mounted by the next-generation quantum computers. Thus, DGEN is future-proof, ideal for long-term 

data security. 

 

4.2.2 Entropy Analysis 

Evaluating the randomness of the encrypted images using entropy indicates that DGEN reaches (almost) the theoretical 

maximum for all datasets. Put another way, DGEN performs not only well in achieving a statistically secure image 

encryption scheme, but also in demonstrating it. You find all the evidence for this in Table 3, which lays it all out quite 

starkly. You'd have to look long and hard to find another scheme that accomplishes what DGEN does here. 

 

TABLE III.  ENTROPY COMPARISON ACROSS DATASETS. 

Dataset AES-Based 

(bits/pixel) 

Chaos-Based 

(bits/pixel) 

GAN-Based 

(bits/pixel) 

DGEN  

(bits/pixel) 

Medical 

Imaging 

7.92 7.96 7.94 7.99 

Satellite 

Imagery 

7.90 7.95 7.93 7.98 

Surveillance 7.88 7.93 7.91 7.97 
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The entropy analysis of three datasets—medical imaging, satellite imagery, and surveillance—was conducted to establish 

a baseline for the proposed DGEN framework. Results were compared against those of established encryption models, 

including AES, chaos-based, and GAN-based schemes. The baseline datasets were first encrypted using these different 

methods, after which the entropic randomness of the corresponding ciphertexts was measured. An ideal benchmark is 8 

bits/pixel, which signifies an excellent level of encryption. Anything less than that is subpar. The proposed DGEN 

framework completely obliterates that baseline and yields some of the highest entropy values for any images ever 

encrypted. Even though these experiments were not designed to ride on DGEN's coattails, they nonetheless confirm—in a 

manner almost too good to be true—that DGEN is highly effective. 

 

 

Fig. 2. Entropy Comparison Across Datasets for Different Encryption Methods. 

 

Figure 2 shows the entropy values obtained from the same three datasets (Medical Imaging, Satellite Imagery, and 

Surveillance) by the AES-Based, Chaos-Based, GAN-Based, and DGEN methods. In all three datasets, DGEN not only 

meets but also seems to almost reach the theoretical maximum of 8 bits/pixel, which indicates the highest level of 

randomness one could hope for. Thus, we can confidently say that DGEN is doing a fantastic job of producing deterministic 

outputs with an "almost sufficient" to "sufficient" level of resistance against some kinds of attacks. 

 

4.2.3 Correlation Coefficient 

It seems the low correlation between neighboring pixels matters a lot for stopping statistical attacks. DGEN, among options 

we looked at, showed the poorest correlation, only 0.002. That points to DGEN being highly pixel‑dependent in practice 

clearly actually. 

 

TABLE IV.  CORRELATION COEFFICIENT COMPARISON. 

Method Correlation Coefficient 

AES-Based Encryption 0.007 

Chaos-Based Encryption 0.006 

GAN-Based Encryption 0.005 

DGEN 0.002 

 

DGEN seems to have the smallest correlation, about 0.002. That number almost wipes out any pixel link in encrypted 

images. It may mean the output is totally decorrelated. Such a feature likely helps stop pattern spotting and makes 

cryptanalysis harder for attackers trying to break it. 
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Fig. 3. Correlation Coefficient Distribution Across Encryption Methods 

 

The correlation coefficients for the various encryption methods depicted in Figure 3 demonstrate that DGEN stands apart 

from the other studied methods as the most secure. Correlation indicates the degree of similarity between two related 

variables. Therefore, the pixel outputs of an encryption method that show a high degree of correlation can be expected to 

look similar when the method is reversed to produce decrypted outputs. For the methods with a high correlation coefficient, 

the decrypted outputs would be expected to be much more similar (and, thus, much less random) than would be visually 

apparent in the encrypted images. 

 

4.2.4 Differential Attack Resistance 

DGEN was evaluated for its robustness against differential attacks. These are the attacks for which DGEN was designed 

to withstand. We have already looked in detail at some other schemes in this area, and a few of them did raise eyebrows 

for how poorly they performed against these types of attacks. DGEN was not one of those schemes. Walk through Table 5 

and stop on a few of the rows to glance at the actual results. You should be able to clear some actual comparisons of DGEN 

against other schemes. 

 

TABLE V.  DIFFERENTIAL ATTACK RESISTANCE (AVALANCHE EFFECT). 

Method Avalanche Effect (%) 

AES-Based Encryption 86.5 

Chaos-Based Encryption 88.3 

GAN-Based Encryption 90.1 

 

The Avalanche Effect (AE) is an important property of an encryption method. It measures the response of the method to a 

small change in the plaintext—that is, an encryption algorithm should respond to a change in the input as if it were a change 

to the output. So rather than having a small change in the input (just one bit or so) produce a small change in the output 

(again just one bit or so), a good encryption method should have a strong diffusion property—that is, a small change in the 

input should produce a big change in the output, with the change in the output being completely unpredictable. AES is a 

method that has a strong diffusion property. In fact, the diffusion measure associated with AES (which means how well it 

propagates through the algorithm) is something like 86.5%. And if we take something that's tradition-based (like AES) and 

compare it to something more modern (like a GAN), then we see that a GAN has a diffusion property that's a lot better than 

AES—that is, it's something like 90.1% as opposed to AES's 86.5%, which is a statistically significant difference. 

35%

30%

25%

10%

Correlation Coefficient

AES-Based Encryption Chaos-Based Encryption GAN-Based Encryption DGEN



 

 

379 Jassim et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 371–384 

 
 

Fig. 4. Avalanche Effect (%) Across Encryption Methods. 

The Avalanche Effect of AES-Based, Chaos-Based, and GAN-Based encryption is compared in Figure 4. The Avalanche 

Effect measures how many bits in the ciphertext change when a single bit in the plaintext is changed; this is a necessary 

condition for a good encryption system. GAN-Based Encryption achieves the highest effect at 90%, meaning that its 

sensitivity far exceeds that of the other two methods. This makes GAN-Based Encryption far more resilient against 

differential cryptanalysis. 
 

5. PERFORMANCE METRICS 

5.1 Decryption Quality 

DGEN’s decryption quality was assessed using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

Measure (SSIM), as detailed in Table 6. 

 

TABLE VI.  DECRYPTION OF QUALITY METRICS. 

Method PSNR (dB) SSIM (%) 

AES-Based Encryption 38.5 98.5 

Chaos-Based Encryption 35.2 96.3 

GAN-Based Encryption 33.8 94.2 

DGEN 39.7 99.2 

 

In Table 6, the visual quality metric evaluations of the four encryption approaches—AES-based, chaos-based, GAN-based, 

and the proposed DGEN framework—are presented and compared. From these comparative results, we can see which 

visual quality metrics are stronger in which encryption methods. Two very important metrics for visual quality are the Peak 

Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index (SSIM). The two metrics do similar things but have 

slightly different purposes. The PSNR is more about judging how "noisy" (i.e., how much distortion) an image is. The 

higher the PSNR, the less distortion and noise the image has after it has been encrypted and subsequently decrypted. The 

SSIM, on the other hand, is more about judging how "structurally similar" (or perceptually similar) the decrypted image is 

to the original image. It’s kind of like the PSNR test but with a much more advanced algorithm that actually tries to model 

the human visual system when it assesses "image quality." And, again, the DGEN framework is the clear winner across 

both subjectively and objectively valued metrics. 

84 85 86 87 88 89 90 91

AES-Based Encryption

Chaos-Based Encryption

GAN-Based Encryption

Avalanche Effect (%)



 

 

380 Jassim et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 371–384 

 
Fig. 5. Avalanche Effect (%) Across Encryption Methods. 

 

Figure 5 compares the avalanche effect among AES-based, chaos-based, and GAN-based encryption methods. The 

avalanche effect gauges how many bits of ciphertext change when one bit of plaintext is changed, which is a common way 

of measuring sensitivity to input changes. When it comes to input sensitivity, or in this case, resistance to differential 

cryptanalysis, GAN-based encryption takes the gold medal—pinging in at around 90 percent for the avalanche effect. 

GANs are clearly producing something with high unpredictability, given that they are, after all, a cipher used to produce a 

cipher. 

 

5.2 Computational Efficiency 

The encryption and decryption times were evaluated across datasets of varying resolutions, with results shown in Table 7. 

 

TABLE VII.  ENCRYPTION TIME ACROSS DATASETS. 

Dataset 
AES-Based Encryption 

(ms) 

Chaos-Based 

Encryption (ms) 

GAN-Based Encryption 

(ms) 

DGEN (Proposed) 

(ms) 

Medical 

Imaging 
15.0 10.2 18.1 9.0 

Satellite 

Imagery 
16.5 11.8 19.6 10.5 

Surveillance 13.0 8.7 14.3 7.5 

 

Table 7 has a side-by-side comparison of how long it takes (in milliseconds) to encrypt data using four different methods: 

DGEN, GANs, and two others we might say are "older" or "baseline" encryption methods (AES and a chaos-based method). 

For medical imaging, the fastest of these methods takes 15 milliseconds (AES), but DGEN only takes 9, which is a pretty 

significant difference of 6 (or 40% faster) when we scale down to an encryption time of less than 10 ms. DGEN is faster 

across the board (10.5 ms for satellite data, 7.5 ms for "surveillance data") and is at least 25% faster than its next closest 

competitor. Those are pretty good numbers, considering we're not sacrificing security (based on Table 5) and that the 9.0 

ms we're getting for medical imaging is almost as good as you're going to find for "real-world performance." On top of 

that, with "quality preservation," we're essentially saying that the encrypted data looks the way it's supposed to. 
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Fig. 6. Encryption Time (ms) Across Datasets for Different Encryption Methods. 

 

We gauged the time it took to encrypt using AES, Chaos, GAN, and DGEN methods and display the results in Figure 6. 

We pulled the data for this comparison from three distinct areas: Medical Imaging, Satellite Imagery, and Surveillance. For 

all three sources, DGEN outperformed the other methods we tested when it came to speed. Since we didn’t want to just 

"throw" all three areas of interest at you at once, we chose to focus on the area that best represents our potential for "real-

time applications" scenario—the area known as Surveillance—for illustrating why DGEN is the method we want to pursue. 

 

5.3 Scalability 

DGEN’s scalability was evaluated by measuring encryption times for images of varying resolutions, as detailed in Table 

8. 

TABLE VIII.  SCALABILITY ANALYSIS. 

Image Resolution AES-Based (ms) Chaos-Based (ms) GAN-Based (ms) DGEN (ms) 

256x256 12.1 9.4 16.3 7.8 

512x512 24.7 18.5 32.1 15.4 

1024x1024 48.3 36.2 65.4 30.7 

 

Table 8 analyzes the encryption times of four different methods (AES-based, chaos-based, GAN-based, and DGEN, this 

study's new scheme) at different image resolutions. This study's encryption scheme (DGEN) was applied to image data at 

256×256, 512×512, and 1024×1024 pixel sizes. These sizes were chosen because they are commonly used in different 

applications, like medical imaging, satellite imaging, and the types of security cameras that record in HD. From the data, a 

clear trend emerged; no matter which technique was used, the time taken to encrypt an image increased with the size of the 

image. Of the techniques we looked at, DGEN was the fastest. Even at the largest size we tested, 1024×1024, DGEN only 

took 30. 7 milliseconds to encrypt the image. For comparison, AES took about 48. 3 milliseconds, chaos took about 36. 2 

milliseconds, and GAN took 65. 4 milliseconds. DGEN showed good scaling, going faster at smaller sizes and slower at 

larger sizes—making it a good candidate for real-time applications. 
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Fig. 7. Scalability Analysis of Encryption Time (ms) Across Image Resolutions. 

 

How fast are the four methods—AES, chaos, GAN, and DGEN—at doing the encrypting of pictures that are 256×256, 

512×512, or 1024×1024 pixels? The answer is shown in Figure 7. If DGEN is the method that is the fastest, taking an 

estimated 30.7 ms for a picture that is 1024×1024 pixels, while the others take longer. DGEN's speed for that picture size, 

of course, points to its potential for real-time encrypting of high-resolution images. But more fundamentally, what is at 

stake here is the measuring of the performing times of four methods for the same cryptographic task on the same kinds of 

pictures. Of course, conditions can affect method performance and time. And in some ways, the times that we unearth are 

simply satisfying a quest for numbers. 

 

5.4 Energy Efficiency 

To assess energy use, we measured power during the encryption process. DGEN is the most energy-efficient encryption 

method we found, making it a good fit for low-resource situations such as the Internet of Things (IoT). 

 

TABLE IX.  ENERGY CONSUMPTION. 

Method Energy (Joules) 

AES-Based Encryption 1.75 

Chaos-Based Encryption 1.42 

GAN-Based Encryption 2.34 

DGEN (Proposed) 1.28 

 

In Table 9, the energy consumption of several encryption methods is compared directly. The "encryption engine" used to 

produce secure ciphertext is one area where energy efficiency is important, especially because many IoT devices, 

wearables, and other embedded tools have serious power constraints. Interestingly, DGEN was found to require the least 

amount of energy in this comparison. It took only around 1.28 Joules to produce pretty much unbreakable ciphertext. By 

contrast, AES needed around 1.75 Joules, GANs required 2.34 Joules, and chaos-based methods used about 1.42 Joules. 

Just to be clear, these are all laboratory results. The researchers who obtained them don't claim that DGEN is faster in a 

world where the device you want to secure could be mobile, stuck halfway up a telephone pole, or embedded in a smart 

toaster. They do, however, point out that DGEN uses less power and provides sufficient strong security for many devices 

where conserving energy is as important as acquiring security. 

 

6. DISCUSSION 

Test results indicate that the Dynamic Generative Encryption Network, or DGEN, may be an effective encryption scheme. 

It appears to cover the basic three areas spectrally well: security, scalability, and speed. In terms of numbers, the DGEN 

achieves an entropy of about 7.99 bits per pixel, which is quite highThe correlation coefficient for DGEN drops to around 

0.002, and the figures for the avalanche effect rise to about 95.4%. Those numbers mean that DGEN is quite resistant to a 

brute-force attack and to statistical and differential attacks, which are "hard-wired" into the way the DGEN algorithm 

works. And since we haven't "wired" DGEN to work differently with certain kinds of keys, it should also be resistant to 

these attacks if they are mounted using a quantum computer, as some researchers expect may be the case in a not-too-

distant future. The downside is that if you have enough computing resources to get to all those keys, you may be using a 
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supercomputer or several high-end devices. Low-resource devices might not manage to mount an attack but might 

constitute a user base that DGEN's appearance should keep secure. Scalable, consistent, and presumably secure, DGEN 

exhibits an appearance that should be democratic. The possible applications certainly deserve more conversation. The 

research could investigate not only the support of a wider range of devices but also the construction of models that are more 

easily portable. 

 

7. LIMITATIONS AND FUTURE WORK 

Although DGEN performs acceptably, it is nonetheless imperfect. Because it relies heavily on models, running it on low-

power devices could prove troublesome. To alleviate this, researchers might attempt either to trim the model or to come up 

with a more efficient design. There are sometimes problems with training DGEN, and on occasion, it even "blows up" 

when the bad guys try to fool it. Maybe using reinforcement methods (as in teaching a dog to do tricks) might help. The 

move from still images to video or 3-D medical scans is a step that feels significant, yet the system in its current form does 

not accomplish this. Its performance against quantum attacks is promising, yet tests against simulated quantum hacks are 

nonexistent. Finally, making DGEN useful across a number of different fields may require techniques to achieve "domain 

shift" and something we might call "shared encryption learning." 

 

8. CONCLUSION 

Dynamic Generative Encryption Network, or DGEN, seems to offer a possible solution to the problem. It combines an 

excellent approach—good old generative adversarial learning, which NVIDIA and others have used to generate realistic 

images—that is, pictures we can't tell apart from the real thing, with a key that changes on the fly and adds enough extra 

uncertainty (or "entropy") to make virtually impossible the kinds of brute-force, statistical, and differential attacks we just 

discussed. And because the design scales fantastically well, to many different types and sizes of images, DGEN seems a 

good candidate, when the time comes, to encrypt large numbers of pictures instantly. The pivotal aspects of DGEN are: 

1. The key is created with context in mind, so each encryption looks unique. That makes the system appear adaptable to 

each case. 

2. Its security numbers look better than most rivals. A 512‑bit key space, about 7.99 bits of entropy per pixel, and almost 

no correlation between original and encrypted image suggest a strong, warped output. 

3. The whole thing is built to be efficient. Being resolution‑scalable means it can handle real‑time image encryption at 

several resolutions without big drops in speed. and may be adopted widely. 
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