Limitations of Deep Learning vs. Human Intelligence: Training Data, Interpretability, Bias, and Ethics

Main Article Content

Yahya Layth Khaleel
Mustafa Abdulfattah Habeeb
Thierry Oscar Codjo EDOH

Abstract

Deep Learning (DL) has brought a paradigm shift in innumerable fields and allowed machines to learn and decide to a very high extent. Its advantage is that it can analyze large sets of data, identify rather complex patterns, and learn from experience. DL models are widely used to perform complicated tasks  [1], [2]. The state of the art in DL includes neural networks with two or more tiers and it has made progressive improvements in fields like image and voice identification, writing comprehension, language generation, and even decision-making self-governing systems [3]. These have led to growing concern and anticipation in the efficiency and rate of change that AI can bring about in industries and people [4].

Article Details

Section

Articles

How to Cite

Limitations of Deep Learning vs. Human Intelligence: Training Data, Interpretability, Bias, and Ethics (Y. L. . Khaleel, M. A. . Habeeb, & T. O. C. . EDOH , Trans.). (2025). Applied Data Science and Analysis, 2025, 3-6. https://doi.org/10.58496/ADSA/2025/002

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.

[2] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comput. Electron. Agric., vol. 147, pp. 70–90, 2018, doi: https://doi.org/10.1016/j.compag.2018.02.016.

[3] M. Alam, M. D. Samad, L. Vidyaratne, A. Glandon, and K. M. Iftekharuddin, “Survey on Deep Neural Networks in Speech and Vision Systems,” Neurocomputing, vol. 417, pp. 302–321, Dec. 2020, doi: 10.1016/j.neucom.2020.07.053.

[4] S. Minaee, A. Abdolrashidi, H. Su, M. Bennamoun, and D. Zhang, “Biometrics recognition using deep learning: a survey,” Artif. Intell. Rev., vol. 56, no. 8, pp. 8647–8695, 2023, doi: 10.1007/s10462-022-10237-x.

[5] Y. Matsuo et al., “Deep learning, reinforcement learning, and world models,” Neural Networks, vol. 152, pp. 267–275, 2022, doi: 10.1016/j.neunet.2022.03.037.

[6] O. I. Obaid, “From Machine Learning to Artificial General Intelligence: A Roadmap and Implications,” Mesopotamian J. Big Data, vol. 2023, no. SE-Articles, pp. 81–91, Aug. 2023, doi: 10.58496/mjbd/2023/012.

[7] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, pp. 685–695, 2021, doi: 10.1007/s12525-021-00475-2.

[8] A. M. Rahmani et al., “Machine Learning (ML) in Medicine: Review, Applications, and Challenges,” Mathematics, vol. 9, no. 22, 2021, doi: 10.3390/math9222970.

[9] H. Song, M. Kim, D. Park, Y. Shin, and J. G. Lee, “Learning From Noisy Labels With Deep Neural Networks: A Survey,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 11, pp. 8135–8153, 2023, doi: 10.1109/TNNLS.2022.3152527.

[10] G. Algan and I. Ulusoy, “Image classification with deep learning in the presence of noisy labels: A survey,” Knowledge-Based Syst., vol. 215, p. 106771, 2021, doi: 10.1016/j.knosys.2021.106771.

[11] F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-Saeedi, “Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 4, no. 1, 2024, doi: 10.58496/MJCS/2024/002.

[12] T. Alqahtani et al., “The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research,” Res. Soc. Adm. Pharm., vol. 19, no. 8, pp. 1236–1242, 2023, doi: 10.1016/j.sapharm.2023.05.016.

[13] V. Buhrmester, D. Münch, and M. Arens, “Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey,” Mach. Learn. Knowl. Extr., vol. 3, no. 4, pp. 966–989, 2021, doi: 10.3390/make3040048.

[14] C. B. Azodi, J. Tang, and S. H. Shiu, “Opening the Black Box: Interpretable Machine Learning for Geneticists,” Trends Genet., vol. 36, no. 6, pp. 442–455, 2020, doi: 10.1016/j.tig.2020.03.005.

[15] A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Comput. Electr. Eng., vol. 118, 2024, doi: 10.1016/j.compeleceng.2024.109409.

[16] B. Brożek, M. Furman, M. Jakubiec, and B. Kucharzyk, “The black box problem revisited. Real and imaginary challenges for automated legal decision making,” Artif. Intell. Law, vol. 32, no. 2, pp. 427–440, 2024, doi: 10.1007/s10506-023-09356-9.

[17] T. Dhar, N. Dey, S. Borra, and R. S. Sherratt, “Challenges of Deep Learning in Medical Image Analysis—Improving Explainability and Trust,” IEEE Trans. Technol. Soc., vol. 4, no. 1, pp. 68–75, 2023, doi: 10.1109/tts.2023.3234203.

[18] Y. L. Khaleel, M. A. Habeeb, A. S. Albahri, T. Al-Quraishi, O. S. Albahri, and A. H. Alamoodi, “Network and cybersecurity applications of defense in adversarial attacks: A state-of-the-art using machine learning and deep learning methods,” vol. 33, no. 1, 2024, doi: doi:10.1515/jisys-2024-0153.

[19] C. Wang et al., “How indoor environmental quality affects occupants’ cognitive functions: A systematic review,” Build. Environ., vol. 193, p. 107647, 2021, doi: 10.1016/j.buildenv.2021.107647.

[20] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha, “Securing Connected Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and the Way Forward,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp. 998–1026, 2020, doi: 10.1109/COMST.2020.2975048.

[21] M. Pichler and F. Hartig, “Machine learning and deep learning—A review for ecologists,” Methods Ecol. Evol., vol. 14, no. 4, pp. 994–1016, 2023, doi: 10.1111/2041-210X.14061.

[22] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain Generalization: A Survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 4396–4415, 2023, doi: 10.1109/TPAMI.2022.3195549.

[23] T. J. Sejnowski, “The unreasonable effectiveness of deep learning in artificial intelligence,” Proc. Natl. Acad. Sci., vol. 117, no. 48, pp. 30033–30038, 2020, doi: 10.1073/pnas.1907373117.

[24] G. S. Nadella, S. Satish, K. Meduri, and S. S. Meduri, “A Systematic Literature Review of Advancements, Challenges and Future Directions of AI And ML in Healthcare,” Int. J. Mach. Learn. Sustain. Dev., vol. 5, no. 3, pp. 115–130, 2023.

[25] N. Sharma and N. Jindal, “Emerging artificial intelligence applications: metaverse, IoT, cybersecurity, healthcare - an overview,”Multimed. Tools Appl., vol. 83, no.19, pp. 57317–57345, 2024, doi: 10.1007/s11042-023-17890-6.

[26] A. S. Mueller, J. B. Cicchino, and D. S. Zuby, “What humanlike errors do autonomous vehicles need to avoid to maximize safety?,” J. Safety Res., vol. 75, pp. 310–318, 2020, doi: https://doi.org/10.1016/j.jsr.2020.10.005.

[27] R. R. Waller and R. L. Waller, “Assembled Bias: Beyond Transparent Algorithmic Bias,” Minds Mach., vol. 32, no. 3, pp. 533–562, 2022, doi: 10.1007/s11023-022-09605-x.

[28] A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.

[29] M. Shah and N. Sureja, “A Comprehensive Review of Bias in Deep Learning Models: Methods, Impacts, and Future Directions,” Arch. Comput. Methods Eng., 2024, doi: 10.1007/s11831-024-10134-2.

[30] M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), K. Daimi and A. Al Sadoon, Eds., Cham: Springer Nature Switzerland, 2024, pp. 120–131.

Similar Articles

You may also start an advanced similarity search for this article.