Results for SL (2, p), p=3,5 and 7

Main Article Content

Niran Sabah Jasim
Mohammed Serdar I. Kirdar
Mohammed Yasin
Shrooq Bahjat Smeein
Amal Rashid Al Hajri

Abstract

The collection of whole  - account grade maps respecting a restricted group G of commutative group cf (G,Z) beneath spot wise addendum. Into these one group own  - account generalized characters a subgroup indicate R(G).


Whole invertible   ´  model form a group on a field F indicate ( ,F). A homo. of GL(n,F) to F-{0} is the determinant of these model, ( ,F) indicate the kernel of it. Thus ( ,F) is a subgp. of ( ,F) include whole models of determinant 1 on F.


Let  vector void on F,  indicate whole linear isomo. of V  upon same, a representation of G for representation void  is a homo. of  to . A representation model of  is a homo. of  to , where  is the degree of the representation model.


From the rational representations character table (CTRR) we compute the cyclic decomposition (CD) for , and 7 to  (2, ).

Article Details

Section

Articles

How to Cite

Results for SL (2, p), p=3,5 and 7 (N. S. Jasim, M. S. I. Kirdar, M. Yasin, S. B. Smeein, & A. R. Al Hajri , Trans.). (2024). Babylonian Journal of Mathematics, 2024, 112-116. https://doi.org/10.58496/BJM/2024/014