A Systematic Review of Metaverse Cybersecurity: Frameworks, Challenges, and Strategic Approaches in a Quantum-Driven Era

Main Article Content

Hasan Ali Al-Tameemi
Ghadeer Ghazi Shayea
Mishall Al-Zubaidie
Yahya Layth Khaleel 
Mustafa Abdulfattah Habeeb
Noor Al-Huda K. Hussein
Raad Z. Homod
Mohammad Aljanabi
O.S Albahri
A. H. Alamoodi
Maad M. Mijwil
Mohammed A. Fadhel
Iman Mohamad Sharaf
Mohanad G. Yaseen
Ahmed Hussein Ali
U. S. Mahmoud
Saleh M. Mohammed
A. S. Albahri

Abstract

This study aims to perform a detailed systematic review that investigates and synthesizes the available literature on the challenges and strategies in cybersecurity in the Metaverse. The methodology employed was to ensure a comprehensive literary analysis of the study methods, employing databases such as ScienceDirect (SD), Scopus, IEEE Xplore (IEEE), and Web of Science (WoS). The search was conducted by employing a query that would yield articles published until September 2024, resulting in a total of 325 papers. After vigorous screening, deduplication, and application of the inclusion and exclusion criteria, 34 studies were identified for quantitative synthesis. These papers were divided into three classes: cybersecurity, AI-based security and IoT applications, and Metaverse and virtual realities. This article provides a systematic and comprehensive overview of previous studies that highlighted four fundamental challenges of cybersecurity in the Metaverse and discussed three recommendations for future improvement. A systematic science mapping analysis was conducted to synthesize the results regarding key trust issues related to security in the Metaverse. In addition, the study investigated a wide spectrum of practical applications of cybersecurity within Metaverse environments, encompassing authentication approaches, intrusion detection systems, privacy preservation frameworks, AI-based threat identification, and blockchain-enabled security proposals. Furthermore, this review explores how quantum technologies can be integrated into Metaverse cybersecurity frameworks to address advanced threat models and enhance resilience. The study also highlighted developments in cybersecurity for the Metaverse while pinpointing existing gaps, emerging threats, and directions for future research that would inform frameworks for improved security. The insights provided bear great significance for researchers, practitioners, and policy actors engaged with the Metaverse cybersecurity and applications of artificial intelligence (AI).


 

Article Details

Section

Articles

How to Cite

A Systematic Review of Metaverse Cybersecurity: Frameworks, Challenges, and Strategic Approaches in a Quantum-Driven Era (H. Ali Al-Tameemi, G. . Ghazi Shayea, M. . Al-Zubaidie, . . . Y. Layth Khaleel , Mustafa Abdulfattah Habeeb, N. A.-H. . K. Hussein, R. . Z. Homod, M. . Aljanabi, O. Albahri, A. H. Alamoodi, M. . M. Mijwil, M. . A. Fadhel, I. . Mohamad Sharaf, M. . G. Yaseen, A. . Hussein Ali, U. S. Mahmoud, S. . M. Mohammed, & A. S. Albahri , Trans.). (2025). Mesopotamian Journal of CyberSecurity, 5(2), 770–803. https://doi.org/10.58496/MJCS/2025/045

References

[1] L. Nautiyal, P. Malik, and A. Agarwal, “Cybersecurity System: An Essential Pillar of Smart Cities,” in Computer Communications and Networks, Z. Mahmood, Ed. Cham: Springer International Publishing, 2018, pp. 25–50. doi: 10.1007/978-3-319-76669-0_2.

[2] B. (Brad) Nadji, “Data Security, Integrity, and Protection,” in Signals and Communication Technology, vol. Part F3121, S. McClellan, Ed. Cham: Springer Nature Switzerland, 2024, pp. 59–83. doi: 10.1007/978-3-031-61117-9_4.

[3] A. Djenna, S. Harous, and D. E. Saidouni, “Internet of Things Meet Internet of Threats: New Concern Cyber Security Issues of Critical Cyber Infrastructure,” Appl. Sci., vol. 11, no. 10, 2021, doi: 10.3390/app11104580.

[4] Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, “A Comprehensive Review of Cyber Security Vulnerabilities, Threats, Attacks, and Solutions,” Electronics, vol. 12, no. 6, 2023, doi: 10.3390/electronics12061333.

[5] V. Wylde et al., “Cybersecurity, Data Privacy and Blockchain: A Review,” SN Comput. Sci., vol. 3, no. 2, p. 127, 2022, doi: 10.1007/s42979-022-01020-4.

[6] W. K. Mohammed, M. A. Taha, and S. M. Mohammed, “A Novel Hybrid Fusion Model for Intrusion Detection Systems Using Benchmark Checklist Comparisons,” Mesopotamian J. CyberSecurity, vol. 4, no. 3, pp. 216–232, 2024, doi: 10.58496/MJCS/2024/024.

[7] M. F. Safitra, M. Lubis, and H. Fakhrurroja, “Counterattacking Cyber Threats: A Framework for the Future of Cybersecurity,” Sustainability, vol. 15, no. 18, 2023, doi: 10.3390/su151813369.

[8] M. M. Mijwil, O. J. Unogwu, Y. Filali, I. Bala, and H. Al-Shahwani, “Exploring the Top Five Evolving Threats in Cybersecurity: An In-Depth Overview,” Mesopotamian J. CyberSecurity, vol. 2023, pp. 57–63, 2023, doi: 10.58496/MJCS/2023/010.

[9] D. Dave, G. Sawhney, P. Aggarwal, N. Silswal, and D. Khut, “The New Frontier of Cybersecurity: Emerging Threats and Innovations,” in 2023 29th International Conference on Telecommunications (ICT), 2023, pp. 1–6. doi: 10.1109/ICT60153.2023.10374044.

[10] M. Subhi, O. F. Rashid, S. A. Abdulsahib, M. K. Hussein, and S. M. Mohammed, “Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model,” Mesopotamian J. CyberSecurity, vol. 4, no. 2, pp. 120–128, 2024.

[11] D. H. Tahayur, and M. Al-Zubaidie, "Enhancing electronic agriculture data security with a blockchain-based search method and e-signatures," Mesopotamian Journal of CyberSecurity, 4(3), 1-21, 2024, doi: 10.58496/MJCS/2024/012.

[12] M. Kuzlu, C. Fair, and O. Guler, “Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity,” Discov. Internet Things, vol. 1, no. 1, p. 7, 2021, doi: 10.1007/s43926-020-00001-4.

[13] M. Abdullahi et al., “Detecting Cybersecurity Attacks in Internet of Things Using Artificial Intelligence Methods: A Systematic Literature Review,” Electronics, vol. 11, no. 2, 2022, doi: 10.3390/electronics11020198.

[14] H. Wang et al., “A Survey on the Metaverse: The State-of-the-Art, Technologies, Applications, and Challenges,” IEEE Internet Things J., vol. 10, no. 16, pp. 14671–14688, 2023, doi: 10.1109/JIOT.2023.3278329.

[15] S. Mystakidis, “Metaverse,” Encyclopedia, vol. 2, no. 1, pp. 486–497, 2022, doi: 10.3390/encyclopedia2010031.

[16] Y. K. Dwivedi et al., “Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” Int. J. Inf. Manage., vol. 66, p. 102542, 2022, doi: 10.1016/j.ijinfomgt.2022.102542.

[17] S. Y. Mohammed, M. Aljanabi, and T. R. Gadekallu, “Navigating the Nexus: A systematic review of the symbiotic relationship between the metaverse and gaming,” Int. J. Cogn. Comput. Eng., vol. 5, pp. 88–103, 2024, doi: https://doi.org/10.1016/j.ijcce.2024.02.001.

[18] A. Awadallah et al., “Artificial Intelligence-Based Cybersecurity for the Metaverse: Research Challenges and Opportunities,” IEEE Commun. Surv. Tutorials, p. 1, 2024, doi: 10.1109/COMST.2024.3442475.

[19] M. Uddin et al., “Exploring the convergence of Metaverse, Blockchain, and AI: A comprehensive survey of enabling technologies, applications, challenges, and future directions,” WIREs Data Min. Knowl. Discov., vol. 14, no. 6, p. e1556, 2024, doi: https://doi.org/10.1002/widm.1556.

[20] S. E. Bibri and Z. Allam, “The Metaverse as a virtual form of data-driven smart cities: the ethics of the hyper-connectivity, datafication, algorithmization, and platformization of urban society,” Comput. Urban Sci., vol. 2, no. 1, p. 22, 2022, doi: 10.1007/s43762-022-00050-1.

[21] K. J. Brakas, “Measuring the Extent of Cyberbullying Comments in Facebook Groups for Mosul University Students,” vol. 5, no. 2, pp. 337–348, 2025.

[22] Z. Allam, A. Sharifi, S. E. Bibri, D. S. Jones, and J. Krogstie, “The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures,” Smart Cities, vol. 5, no. 3, pp. 771–801, 2022, doi: 10.3390/smartcities5030040.

[23] A. Koohang et al., “Shaping the Metaverse into Reality: A Holistic Multidisciplinary Understanding of Opportunities, Challenges, and Avenues for Future Investigation,” J. Comput. Inf. Syst., vol. 63, no. 3, pp. 735–765, May 2023, doi: 10.1080/08874417.2023.2165197.

[24] F. Kamil, H. Mihna, M. A. Habeeb, L. A. E. Al-seedi, Y. L. Khaleel, and D. A. Mohammed, “Bridging Law and Machine Learning : A Cybersecure Model for Classifying Digital Real Estate Contracts in the Metaverse,” pp. 35–49, 2025.

[25] Y. Huang, Y. J. Li, and Z. Cai, “Security and Privacy in Metaverse: A Comprehensive Survey,” Big Data Min. Anal., vol. 6, no. 2, pp. 234–247, 2023, doi: 10.26599/BDMA.2022.9020047.

[26] T. Parlar, “Data Privacy and Security in the Metaverse BT - Metaverse: Technologies, Opportunities and Threats,” F. S. Esen, H. Tinmaz, and M. Singh, Eds. Singapore: Springer Nature Singapore, 2023, pp. 123–133. doi: 10.1007/978-981-99-4641-9_8.

[27] P. Sachdeva and A. Mitra, “Chapter 2 - Navigating the complex terrain: An in-depth analysis of the challenges of the metaverse,” in Exploring the Metaverse, D. Koundal and N. Kumar, Eds. Academic Press, 2025, pp. 17–30. doi: https://doi.org/10.1016/B978-0-443-24132-1.00002-8.

[28] M. Ali, F. Naeem, G. Kaddoum, and E. Hossain, “Metaverse Communications, Networking, Security, and Applications: Research Issues, State-of-the-Art, and Future Directions,” IEEE Commun. Surv. Tutorials, vol. 26, no. 2, pp. 1238–1278, 2024, doi: 10.1109/COMST.2023.3347172.

[29] S. Bindewari, A. Raghav, and R. Tiwari, “Chapter 10 - Introduction of cyber security with metaverse: Challenges and applications,” in Exploring the Metaverse, D. Koundal and N. Kumar, Eds. Academic Press, 2025, pp. 139–164. doi: https://doi.org/10.1016/B978-0-443-24132-1.00010-7.

[30] P. Ruiu, M. Nitti, V. Pilloni, M. Cadoni, E. Grosso, and M. Fadda, “Metaverse & Human Digital Twin: Digital Identity, Biometrics, and Privacy in the Future Virtual Worlds,” Multimodal Technol. Interact., vol. 8, no. 6, 2024, doi: 10.3390/mti8060048.

[31] M. Balzano and G. Marzi, “At the Cybersecurity Frontier: Key Strategies and Persistent Challenges for Business Leaders,” Strateg. Chang., vol. n/a, no. n/a, doi: https://doi.org/10.1002/jsc.2622.

[32] Y. Li and Q. Liu, “A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments,” Energy Reports, vol. 7, pp. 8176–8186, 2021, doi: https://doi.org/10.1016/j.egyr.2021.08.126.

[33] Y. Perwej, S. Q. Abbas, J. P. Dixit, N. Akhtar, and A. K. Jaiswal, “A systematic literature review on the cyber security,” Int. J. Sci. Res. Manag., vol. 9, no. 12, pp. 669–710, 2021.

[34] M. Bartsch and S. Frey, Cybersecurity best practices. Springer, 2018.

[35] V. Adewopo, B. Gonen, N. Elsayed, M. Ozer, and Z. S. Elsayed, “Deep learning algorithm for threat detection in hackers forum (deep web),” arXiv Prepr. arXiv2202.01448, 2022.

[36] K. Achuthan, S. Ramanathan, S. Srinivas, and R. Raman, “Advancing cybersecurity and privacy with artificial intelligence: current trends and future research directions,” Front. Big Data, vol. 7, p. 1497535, 2024.

[37] J. LeClair, S. Abraham, and L. Shih, “An interdisciplinary approach to educating an effective cyber security workforce,” in Proceedings of the 2013 on InfoSecCD’13: Information Security Curriculum Development Conference, 2013, pp. 71–78.

[38] S. Abdelkader et al., “Securing modern power systems: Implementing comprehensive strategies to enhance resilience and reliability against cyber-attacks,” Results Eng., vol. 23, p. 102647, 2024, doi: https://doi.org/10.1016/j.rineng.2024.102647.

[39] S. E. Bibri, “The Social Shaping of the Metaverse as an Alternative to the Imaginaries of Data-Driven Smart Cities: A Study in Science, Technology, and Society,” Smart Cities, vol. 5, no. 3, pp. 832–874, 2022, doi: 10.3390/smartcities5030043.

[40] I. V Bajić, T. Saeedi-Bajić, and K. Saeedi-Bajić, “Metaverse: A Young Gamer’s Perspective,” in 2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), 2023, pp. 1–6. doi: 10.1109/MMSP59012.2023.10337702.

[41] D. B. Rawat and H. El Alami, “Metaverse: Requirements, Architecture, Standards, Status, Challenges, and Perspectives,” IEEE Internet Things Mag., vol. 6, no. 1, pp. 14–18, 2023, doi: 10.1109/IOTM.001.2200258.

[42] Y. Wang et al., “A Survey on Metaverse: Fundamentals, Security, and Privacy,” IEEE Commun. Surv. Tutorials, vol. 25, no. 1, pp. 319–352, 2023, doi: 10.1109/COMST.2022.3202047.

[43] M. Tukur et al., “The metaverse digital environments: a scoping review of the challenges, privacy and security issues,” Front. big Data, vol. 6, p. 1301812, 2023.

[44] G. Kabanda, C. T. Chipfumbu, and T. Chingoriwo, “A Cybersecurity Model for a Roblox-based Metaverse Architecture Framework,” Br. J. Multidiscip. Adv. Stud. Eng. Technol., vol. 3, no. 2, pp. 105–141, 2022, doi: 10.37745/bjmas.2022.0048.

[45] M. Pooyandeh, K. J. Han, and I. Sohn, “Cybersecurity in the AI-Based Metaverse: A Survey,” Appl. Sci., vol. 12, no. 24, 2022, doi: 10.3390/app122412993.

[46] P. Jaipong, S. Siripipattanakul, P. Sriboonruang, and T. Sitthipon, “A Review of Metaverse and Cybersecurity in the Digital Era,” Int. J. Comput. Sci. Res., vol. Advanced online publication, 2022, doi: 10.25147/ijcsr.2017.001.1.122.

[47] T. N. Nguyen, “Toward Human Digital Twins for Cybersecurity Simulations on the Metaverse: Ontological and Network Science Approach,” JMIRx Med, vol. 3, no. 2, p. e33502, Apr. 2022, doi: 10.2196/33502.

[48] I. Yaqoob, K. Salah, R. Jayaraman, and M. Omar, “Metaverse applications in smart cities: Enabling technologies, opportunities, challenges, and future directions,” Internet of Things, vol. 23, p. 100884, 2023, doi: https://doi.org/10.1016/j.iot.2023.100884.

[49] Y. W. Chow, W. Susilo, Y. Li, N. Li, and C. Nguyen, “Visualization and Cybersecurity in the Metaverse: A Survey,” J. Imaging, vol. 9, no. 1, 2023, doi: 10.3390/jimaging9010011.

[50] M. Al-Emran and M. Deveci, “Unlocking the potential of cybersecurity behavior in the metaverse: Overview, opportunities, challenges, and future research agendas,” Technol. Soc., vol. 77, 2024, doi: 10.1016/j.techsoc.2024.102498.

[51] M. Al-Emran et al., “Evaluating the barriers affecting cybersecurity behavior in the Metaverse using PLS-SEM and fuzzy sets (fsQCA),” Comput. Human Behav., vol. 159, 2024, doi: 10.1016/j.chb.2024.108315.

[52] M. Al-kfairy, A. Alomari, M. Al-Bashayreh, O. Alfandi, and M. Tubishat, “Unveiling the Metaverse: A survey of user perceptions and the impact of usability, social influence and interoperability,” Heliyon, vol. 10, no. 10, May 2024, doi: 10.1016/j.heliyon.2024.e31413.

[53] P. Radanliev, “Integrated cybersecurity for metaverse systems operating with artificial intelligence, blockchains, and cloud computing,” Front. Blockchain, vol. Volume 7-2024, 2024, doi: 10.3389/fbloc.2024.1359130.

[54] A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Comput. Electr. Eng., vol. 118, p. 109409, 2024.

[55] Y. L. Khaleel, M. A. Habeeb, A. S. Albahri, T. Al-Quraishi, O. S. Albahri, and A. H. Alamoodi, “Network and cybersecurity applications of defense in adversarial attacks: A state-of-the-art using machine learning and deep learning methods,” J. Intell. Syst., vol. 33, no. 1, 2024, doi: 10.1515/jisys-2024-0153.

[56] G. G. Shayea, M. H. M. Zabil, M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Strategies for protection against adversarial attacks in AI models: An in-depth review,” J. Intell. Syst., vol. 34, no. 1, p. 20240277, 2025, doi: 10.1515/jisys-2024-0277.

[57] M. S. Hossain, M. S. Islam, and M. A. Rahman, “A Cyber Range Framework for Emulating Secure and Private IT/OT Consumer Service Verticals Towards 6G,” IEEE Trans. Consum. Electron., pp. 1–1, 2024, doi: 10.1109/TCE.2024.3387055.

[58] S. Jebri, A. Ben Amor, and S. Zidi, “A seamless authentication for intra and inter metaverse platforms using blockchain,” Comput. Networks, vol. 247, p. 110460, 2024, doi: 10.1016/j.comnet.2024.110460.

[59] V. Murgai, V. R. R. Lolabhattu, R. Stimpson, E. Tripathi, and S. Chickala, “Securing the Metaverse: Traffic Application Classification and Anomaly Detection,” in Proceedings - 2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2024, 2024, pp. 111–117. doi: 10.1109/WoWMoM60985.2024.00031.

[60] I. Ud Din, K. Habib Khan, A. Almogren, M. Zareei, and J. Arturo Perez Diaz, “Securing the Metaverse: A Blockchain-Enabled Zero-Trust Architecture for Virtual Environments,” IEEE Access, vol. 12, pp. 92337–92347, 2024, doi: 10.1109/ACCESS.2024.3423400.

[61] E. C. Nkoro, C. I. Nwakanma, J. M. Lee, and D. S. Kim, “Detecting cyberthreats in Metaverse learning platforms using an explainable DNN,” Internet of Things (Netherlands), vol. 25, p. 101046, 2024, doi: 10.1016/j.iot.2023.101046.

[62] M. Vondráček, I. Baggili, P. Casey, and M. Mekni, “Rise of the Metaverse’s Immersive Virtual Reality Malware and the Man-in-the-Room Attack & Defenses,” Comput. Secur., vol. 127, p. 102923, 2023, doi: 10.1016/j.cose.2022.102923.

[63] M. Alauthman, A. Ishtaiwi, A. Al Maqousi, and W. Hadi, “A Framework for Cybersecurity in the Metaverse,” 2024. doi: 10.1109/ICCR61006.2024.10532868.

[64] B. B. Gupta, A. Gaurav, and V. Arya, “Fuzzy logic and biometric-based lightweight cryptographic authentication for metaverse security,” Appl. Soft Comput., vol. 164, 2024, doi: 10.1016/j.asoc.2024.111973.

[65] S. Y. Kuo, F. H. Tseng, and Y. H. Chou, “Metaverse intrusion detection of wormhole attacks based on a novel statistical mechanism,” Futur. Gener. Comput. Syst., vol. 143, pp. 179–190, 2023, doi: 10.1016/j.future.2023.01.017.

[66] N. A. Husin, A. A. Abdulsaeed, Y. R. Muhsen, A. S. Zaidan, A. Alnoor, and Z. R. Al-mawla, “Evaluation of Metaverse Tools Based on Privacy Model Using Fuzzy MCDM Approach,” Lect. Notes Networks Syst., vol. 895 LNNS, pp. 1–20, 2023, doi: 10.1007/978-3-031-51716-7_1.

[67] J. N. Al-Karaki, M. Omar, A. Gawanmeh, and A. Jones, “Advancing CyberSecurity Education and Training: Practical Case Study of Running Capture the Flag (CTF) on the Metaverse vs. Physical Settings,” in 2023 International Conference on Intelligent Metaverse Technologies and Applications, iMETA 2023, 2023, pp. 1–7. doi: 10.1109/iMETA59369.2023.10294722.

[68] E. C. Nkoro, C. I. Nwakanma, J. M. Lee, and D. S. Kim, “Bit-by-Bit: A Quantization-Aware Training Framework with XAI for Robust Metaverse Cybersecurity,” in 6th International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2024, Feb. 2024, pp. 832–837. doi: 10.1109/ICAIIC60209.2024.10463374.

[69] T. Gaber, J. B. Awotunde, M. Torky, S. A. Ajagbe, M. Hammoudeh, and W. Li, “Metaverse-IDS: Deep learning-based intrusion detection system for Metaverse-IoT networks,” Internet of Things (Netherlands), vol. 24, p. 100977, 2023, doi: 10.1016/j.iot.2023.100977.

[70] F. O. Catak, M. Kuzlu, E. Catak, U. Cali, and O. Guler, “Defensive Distillation-Based Adversarial Attack Mitigation Method for Channel Estimation Using Deep Learning Models in Next-Generation Wireless Networks,” IEEE Access, vol. 10, pp. 98191–98203, 2022, doi: 10.1109/ACCESS.2022.3206385.

[71] R. Aljaberi, M. Alawi, K. El Edlebi, J. Zemerly, and C. Yeun, “AI-Driven Scalable Authentication Framework Using ECG and EEG Biometrics for Enhanced Digital Security,” in Proceedings of the 15th Annual Undergraduate Research Conference on Applied Computing on "AI for a Sustainable Economy.” URC 2024, Apr. 2024, pp. 1–7. doi: 10.1109/URC62276.2024.10604554.

[72] T. Natarajan, P. Pragha, K. Dhalmahapatra, and D. R. Veera Raghavan, “Unveiling metaverse sentiments using machine learning approaches,” Kybernetes, 2024, doi: 10.1108/K-11-2023-2268.

[73] Y. Yu, J. Liu, H. Guo, B. Mao, and N. Kato, “A Spatiotemporal Backdoor Attack Against Behavior-Oriented Decision Makers in Metaverse: From Perspective of Autonomous Driving,” IEEE J. Sel. Areas Commun., vol. 42, no. 4, pp. 948–962, Apr. 2024, doi: 10.1109/JSAC.2023.3345379.

[74] A. D. Sarang, M. A. Alawami, and K.-W. Park, “MV-Honeypot: Security Threat Analysis by Deploying Avatar as a Honeypot in COTS Metaverse Platforms,” C. Model. Eng. Sci., 2024, doi: 10.32604/cmes.2024.053434.

[75] S. Salloum, K. Tahat, D. Tahat, A. Mansoori, and R. Alfaisal, “Delving Into the Security & Privacy of the Metaverse Matrix,” in Proceedings - 2023 10th International Conference on Social Networks Analysis, Management and Security, SNAMS 2023, Nov. 2023, pp. 1–5. doi: 10.1109/SNAMS60348.2023.10375463.

[76] B. B. Gupta, A. Gaurav, V. Arya, and K. T. Chui, “LSTM-GRU Based Efficient Intrusion Detection in 6G-Enabled Metaverse Environments,” in Proceedings - 2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2024, Jun. 2024, pp. 118–123. doi: 10.1109/WoWMoM60985.2024.00032.

[77] M. I. Hossain and R. Hasan, “Threat Model-based Security Analysis and Mitigation Strategies for a Trustworthy Metaverse,” in Proceedings - 2023 IEEE International Conference on Metaverse Computing, Networking and Applications, MetaCom 2023, 2023, pp. 33–40. doi: 10.1109/MetaCom57706.2023.00021.

[78] S. Zhang, Y. Wang, E. Luo, Q. Liu, K. Gu, and G. Wang, “A traceable and revocable decentralized multi-authority privacy protection scheme for social metaverse,” J. Syst. Archit., vol. 140, p. 102899, 2023, doi: 10.1016/j.sysarc.2023.102899.

[79] Z. K. Mohammed et al., “A metaverse framework for IoT-based remote patient monitoring and virtual consultations using AES-256 encryption,” Appl. Soft Comput., vol. 158, p. 111588, 2024, doi: 10.1016/j.asoc.2024.111588.

[80] O. Nnamonu, M. Hammoudeh, and T. Dargahi, “Metaverse Cybersecurity Threats and Risks Analysis: The case of Virtual Reality Towards Security Testing and Guidance Framework,” in Proceedings - 2023 IEEE International Conference on Metaverse Computing, Networking and Applications, MetaCom 2023, Jun. 2023, pp. 94–98. doi: 10.1109/MetaCom57706.2023.00028.

[81] U. U. Izuazu, D. S. Kim, and J. M. Lee, “Unravelling the Black Box: Enhancing Virtual Reality Network Security with Interpretable Deep Learning-Based Intrusion Detection System,” in International Conference on ICT Convergence, 2023, pp. 928–931. doi: 10.1109/ICTC58733.2023.10392826.

[82] C. Dilibal and Y. Tur, “Implementation of Developed Esantem Smart Healthcare System in Metaverse,” in ISMSIT 2022 - 6th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings, Oct. 2022, pp. 1027–1031. doi: 10.1109/ISMSIT56059.2022.9932849.

[83] F. Fiaz, S. M. Sajjad, Z. Iqbal, M. Yousaf, and Z. Muhammad, “MetaSSI: A Framework for Personal Data Protection, Enhanced Cybersecurity and Privacy in Metaverse Virtual Reality Platforms,” Futur. Internet, vol. 16, no. 5, 2024, doi: 10.3390/fi16050176.

[84] Y. Bai et al., “ISPPFL: An incentive scheme based privacy-preserving federated learning for avatar in metaverse,” Comput. Networks, vol. 251, p. 110654, 2024, doi: 10.1016/j.comnet.2024.110654.

[85] Z. Zhang, K. Yang, Y. Tian, and J. Ma, “An Anti-Disguise Authentication System Using the First Impression of Avatar in Metaverse,” IEEE Trans. Inf. Forensics Secur., vol. 19, pp. 6393–6408, 2024, doi: 10.1109/TIFS.2024.3410527.

[86] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, Y. Xiao, D. Niyato, and E. Dutkiewicz, “MetaShard: A Novel Sharding Blockchain Platform for Metaverse Applications,” IEEE Trans. Mob. Comput., vol. 23, no. 5, pp. 4348–4361, May 2024, doi: 10.1109/TMC.2023.3290955.

[87] X. Tu, R. Ala-Laurinaho, C. Yang, J. Autiosalo, and K. Tammi, “Architecture for data-centric and semantic-enhanced industrial metaverse: Bridging physical factories and virtual landscape,” J. Manuf. Syst., vol. 74, pp. 965–979, 2024, doi: 10.1016/j.jmsy.2024.05.016.

[88] J. Han et al., “ParaDefender: A Scenario-Driven Parallel System for Defending Metaverses,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 53, no. 4, pp. 2118–2127, 2023, doi: 10.1109/TSMC.2022.3228928.

[89] N. Mourad et al., “Decisioning-Based Approach for Optimising Control Engineering Tools Using Digital Twin Capabilities and Other Cyber-Physical Metaverse Manufacturing System Components,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 3212–3221, 2024, doi: 10.1109/TCE.2023.3326047.

[90] A. S. Tejani, Y. S. Ng, Y. Xi, and J. C. Rayan, “Understanding and Mitigating Bias in Imaging Artificial Intelligence,” Radiographics, vol. 44, no. 5, 2024, doi: 10.1148/rg.230067.

[91] E. A. Tuli, J.-M. Lee, and D.-S. Kim, “Integration of Quantum Technologies into Metaverse: Applications, Potentials, and Challenges,” IEEE Access, vol. 12, pp. 29995–30019, 2024, doi: 10.1109/ACCESS.2024.3366527.

[92] M. Z. Aloudat et al., “Metaverse Unbound: A Survey on Synergistic Integration Between Semantic Communication, 6G, and Edge Learning,” IEEE Access, vol. 13, pp. 58302–58350, 2025, doi: 10.1109/ACCESS.2025.3555753.

[93] M. Hatami, Q. Qu, Y. Chen, H. Kholidy, E. Blasch, and E. Ardiles-Cruz, “A Survey of the Real-Time Metaverse: Challenges and Opportunities,” Futur. Internet, vol. 16, no. 10, 2024, doi: 10.3390/fi16100379.

[94] S. Park, H. Baek, and J. Kim, “Spatio-Temporal Multi-Metaverse Dynamic Streaming for Hybrid Quantum-Classical Systems,” IEEE/ACM Trans. Netw., vol. 32, no. 6, pp. 5279–5294, 2024, doi: 10.1109/TNET.2024.3453067.

[95] T. G. Tregi; and M. Al-Zubaidie, “Enhancing Traffic Data Security in Smart Cities Using Optimized Quantum-Based Digital Signatures and Privacy-Preserving Techniques,” Mesopotamian J. CyberSecurity, vol. 5, no. 1, pp. 256–272, 2025, doi: 10.58496/MJCS/2025/017.

[96] D. Gurung, S. R. Pokhrel, and G. Li, “Quantum Federated Learning for Metaverse: Analysis, Design and Implementation,” IEEE Trans. Netw. Serv. Manag., p. 1, 2025, doi: 10.1109/TNSM.2025.3552307.

[97] Y. Xu, Y. Gao, M. Wang, and X. Zhu, “Human-Guided Metaverse Synthesis for Quantum Dots: Advancing Nanomaterial Research through Augmented Artificial Intelligence,” ACS Appl. Mater. Interfaces, vol. 16, no. 34, pp. 45207–45213, Aug. 2024, doi: 10.1021/acsami.4c09842.

[98] H.-J. Kwon, A. El Azzaoui, and J. H. Park, “MetaQ: A Quantum Approach for Secure and Optimized Metaverse Environment,” Human-centric Comput. Inf. Sci., vol. 12, no. 42, 2022, doi: 10.22967/HCIS.2022.12.042.

[99] U. Khalid, M. S. Ulum, A. Farooq, T. Q. Duong, O. A. Dobre, and H. Shin, “Quantum Semantic Communications for Metaverse: Principles and Challenges,” IEEE Wirel. Commun., vol. 30, no. 4, pp. 26–36, 2023, doi: 10.1109/MWC.002.2200613.

[100] E. A. Tuli, J.-M. Lee, and D.-S. Kim, “Leveraging quantum blockchain for secure multiparty space sharing and authentication on specialized metaverse platform,” Sci. Rep., vol. 14, no. 1, p. 25776, 2024, doi: 10.1038/s41598-024-74213-x.

[101] M. Emu, S. Choudhury, and K. Salomaa, “Stochastic Resource Optimization for Metaverse Data Marketplace by Leveraging Quantum Neural Networks,” IEEE Trans. Netw. Serv. Manag., vol. 21, no. 3, pp. 2613–2623, 2024, doi: 10.1109/TNSM.2024.3389048.

[102] V. Dogra et al., “A Complete Process of Text Classification System Using State-of-the-Art NLP Models,” Comput. Intell. Neurosci., vol. 2022, no. 1, p. 1883698, 2022, doi: https://doi.org/10.1155/2022/1883698.

[103] Y. Abdelgadir Mohamed, A. H. H. M. Mohamed, A. Khanan, M. Bashir, M. A. E. Adiel, and M. A. Elsadig, “Navigating the Ethical Terrain of AI-Generated Text Tools: A Review,” IEEE Access, vol. 12, pp. 197061–197120, 2024, doi: 10.1109/ACCESS.2024.3521945.

[104] F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-Saeedi, “Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 4, no. 1, pp. 4–16, 2024, doi: 10.58496/MJCS/2024/002.

[105] M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), 2024, pp. 120–131.

[106] Y. L. Khaleel, M. A. Habeeb, and G. G. Shayea, “Integrating Image Data Fusion and ResNet Method for Accurate Fish Freshness Classification,” Iraqi J. Comput. Sci. Math., vol. 5, no. 4, p. 21, 2024.

[107] A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.

[108] T. Kirat, O. Tambou, V. Do, and A. Tsoukiàs, “Fairness and explainability in automatic decision-making systems. A challenge for computer science and law,” EURO J. Decis. Process., vol. 11, p. 100036, 2023, doi: 10.1016/j.ejdp.2023.100036.

[109] Y. L. Khaleel, M. A. Habeeb, and T. O. C. EDOH, “Limitations of Deep Learning vs. Human Intelligence: Training Data, Interpretability, Bias, and Ethics,” Appl. Data Sci. Anal., vol. 2025, pp. 3–6, 2025, doi: 10.58496/ADSA/2025/002.

[110] N. van Berkel, Z. Sarsenbayeva, and J. Goncalves, “The methodology of studying fairness perceptions in Artificial Intelligence: Contrasting CHI and FAccT,” Int. J. Hum. Comput. Stud., vol. 170, p. 102954, 2023, doi: 10.1016/j.ijhcs.2022.102954.

[111] E. D. Villacis Calderon, T. L. James, and P. B. Lowry, “How Facebook’s newsfeed algorithm shapes childhood vaccine hesitancy: An algorithmic fairness, accountability, and transparency (FAT) perspective,” Data Inf. Manag., p. 100042, 2023, doi: 10.1016/j.dim.2023.100042.

Similar Articles

You may also start an advanced similarity search for this article.