RESEARCH ARTICLE

Student's Rating System for Teachers: A Tool for Teacher Scheduling Consideration

Naomi A. Bajao¹, Jose Primo S. Bardoquillo¹, Jhay G. Concha¹, Mae Fatima S. Monsanto¹, Ma. Chrisfie Karen L. Mojar¹

¹Cebu Technological University - Tuburan Campus, Barangay 8, Tuburan, Cebu, 6043, Philippines

ARTICLE INFO

Article History
Received 02 Feb 2023
Accepted 14 Mar 2023
Published 06 Apr 2023

Keywords
Rating system
Teacher effectiveness
Faculty evaluation
Professional development
School improvement

ABSTRACT

The end-of-term ratings are one of the most crucial components of improving educational institutions' ability to assess teachers' performance. The paper-based evaluation system for teachers at Cebu Technological University's Tuburan Campus is time-consuming and laborious. During the flexible learning, the school uses Google Forms to create surveys to rate the teachers which also has shortcomings since Google Forms has limited functions. To solve these issues, the proponents created a web-based evaluation system that makes it simple for students to rate their professors and generates evaluation reports at ease. Additionally, the system gives the system administrator the ability to control colleges, users, and evaluations. It will save time and manpower because the results are created automatically. The system was developed using HTML, CSS, Bootstrap, PHP, and MySQL while adhering to the Agile Model of the Software Development Life Cycle. The proponents allowed the SAST Coordinator and students to test the system and evaluate each module during the usability testing. Throughout unit testing, integration testing, and system/alpha testing, the system was successful and performed as planned. Enhancements to the system's features are highly recommended in order to augment the system's functionality including further study on the system's technology acceptance.

1. INTRODUCTION

The achievement of the program's set learning outcomes is one of the primary processes in university educational programs. Several methods of learning assurance can be used to assess whether or not learning outcomes have been met. Course embedded measurement, in which teaching and assessment methods are evaluated, is an important method for determining whether or not learning outcomes have been met. Student's rating system for teachers, in which students evaluate the quality of teaching and assessments (teaching management and performance) per course, are widely used to assess course and teaching quality. Studies suspect that individual teachers are the most significant school-related factor in student achievement gains that effectiveness varies greatly between teachers and that differences in effectiveness are not well predicted by traditional qualifications. The current system for evaluating teacher's performances inside the campus is manually running. During face-to-face classes, the university used to distribute paper questionnaires and students are required to complete the evaluation form. After the forms have been completed and gathered, statistical analysis begin. This process is lengthy, difficult and prone to errors, making it difficult to be quick and accurate. It is not feasible to use because the amount of data available is limited. When flexible learning began, classes moved online and the university found another way of evaluating the teachers. Google Forms were used to create surveys and rate teachers which also has shortcomings due to the application’s limited functions. Student’s Rating System for Teachers is a web application that enables the administrator to add colleges, departments, courses, classes, subjects and users. It will also enable the administrator to create evaluation criteria and questionnaires and assign teachers to be evaluated by the students. It also enables the students to rate and give comments about the performances of their teachers. After the students submit the ratings, the system will automatically generate an evaluation report that can be used by the department chairs to consider in the assigning of schedules of the teachers.

1.1 Review of Related Systems

This section presents the different similar systems from both foreign and local researchers. The related studies focus on numerous aspects that will support in the development of the study. The study is generally concentrating on creating a system for the Cebu Technological University- Tuburan Campus. The literatures of this study comes from articles, journals and electronic books such as PDFs, and another existing dissertations which is significant in the advancement of awareness concerning the study.

*Corresponding author. Email: naomi.bajao@ctu.edu.ph
Foreign Systems

A similar system was conducted at the Stamford University Bangladesh by Amjad and Linda (2019) which is a web-based automated tool for Course Teacher Evaluation System (TTE). The system lets the students evaluated the teachers of any particular course based on the predefined questions and the results of the evaluation is automatically generated along with graphical representation. From the generated reports, it will be easy for the teachers to understand and focus on the area where they need to improve their skills and teaching methods. In TTE system the main control is done by the admin. Initially the admin has to sign up for creating an account. This account is created by an email and password. This password should have at least 8 characters, one character must be capital letter, one must be small letter and one must be digit. This process helps to create strong password. The TTE is a fully automated web based system which saves time to evaluate the courses very easily. It is also possible to save the result as pdf file format and print as a report.

Another similar system was conducted by Umar Yerima Saleh entitled “Online Teaching Evaluation System”. The system enable the students to rate the teaching performance of their instructors at the end of each and every semester in the academic session. The system only allows the registered students in the department to perform the rating. The system is limited only for the use of the Mathematics Department. Administrator of the implemented system will use the rating results to improve course offerings and provide feedback to the instructors to improve their teaching performance. Technologies used to implement the system were: HTML, JavaScript, JQuery, MySQL, Bootstrap, WAMP and PHP.

Another study entitled “CFES or the Computerized Faculty Evaluation System” was conducted to allow for easier data collection and more accurate data analysis of faculty evaluation in less time The Computerized Faculty Evaluation System is a paperless process in which the evaluator (students, co-teachers, and supervisor) will evaluate the teacher using the computer and the system. The Administrator has the ability to revise and update the list of questions. The Administrator can also generate and print faculty evaluation results. Students can rate or evaluate the teacher by logging into their accounts. Students may also leave a comment for their teachers. Teachers and faculty can access their accounts to view their results and comments. The system was developed using Visual Basic, PHP and MySQL.

The "Faculty Evaluation System" study by Singh et al. (2020) makes use of automated evaluation to aid examine the verbatim feedbacks of the faculty members instructing in any institute. The suggested solution takes all the crucial information from the comments and uses machine learning techniques to determine the emotion score for each faculty for each facet. In their system, students can grade their professors based on the administrator-created questions using a five-scale sentiment score (Excellent, Good, Average, Below Average, Unsatisfactory). Students may also provide feedback and remarks to a particular faculty member. The suggested system has the following features: login, registration, email verification, faculty evaluation, and commenting.

Turnip et al. (2019) carried out a study titled "Decision Support System of Teacher Performance Assessment with Smart Method". The application gives the user the option to access the login form, after which the user logs in using the appropriate credentials. The teacher performance evaluation form will open if the application user is logged in as a teacher. The application opens the admin form if the application user is logged in as the administrator, and the principal form if the application user is logged in as the principal. Users of the application open the criteria form. The data will then be processed as necessary, for instance, if the user adds a computation, it will be saved. If a user modifies a calculation, it will be modified; likewise, if a user deletes a calculation, it will be removed. Users of the application can generate decisions using criteria that are stored in the database for those particular criteria. Users of the application open the Report form. The data is subsequently processed in accordance with the requirements; if the user enters data from a report, the calculation's overall result is then displayed. A report will be printed if the user chooses to print it.

Another study was conducted by Al-Khatib (2014) entitled “Web-based Teaching Evaluation Systems” at the College of IT and Computer Science in Jerash University. The system enables the instructors to create their own questionnaires on the Web. There will be a question bank attached to the questionnaire builder so instructors can compile questionnaires using questions from the bank. They will also be able to choose to write their own questions or modify existing ones. When instructors finish designing their questionnaires, the questionnaire will be put on the Web to collect students’ responses. To do that, all they will have to do is to specify a period during which the students will be given access to the questionnaire. When the data collection period finishes, a report will be generated automatically which the instructor can view on the web. The web application was created using HTML and PHP, with MySQL being used as the server database. With the aid of these software program implementations, users may easily access the website, log in using any common web browser, fill out the necessary questionnaire forms, and submit the forms. Results are automatically saved to a remote database server, creating dynamic web pages that can be shown to users in the right forms and formats. The evaluation questionnaire's components can be saved in the database and dynamically recreated on the web through dynamic web pages.

Another study was conducted by Gebreal et al. (2008) at the Mekelle University Ethiopian Institute of Technology entitled “Instructor Evaluation System for School of Computing”. Prototyping, where users are actively involved in the development, is the project modeling technique utilized in the process. Users using this methodology have a better grasp of the system.
being developed because a functioning model of the system is supplied. The automated system, a web-based program, overcomes the problems by giving the users tools that let them assess the effectiveness of the instructors. Additionally, it enables users to update their profiles, produces a conclusive report that provides educators with the evaluation results, and permits viewing of the evaluation results. PHP and MySQL were utilized as the back-end languages, whereas HTML, CSS, and JavaScript were used as the front-end languages.

In their 2016 project “Online Teachers Evaluation System” at the State University of Bangladesh, Roy and Chakraborty created and deployed a web-based system enabling grad students to rate their professors. With this approach, students can engage in assessments from any location using their own devices, and authorities will receive automated results. Laravel is a framework that was used in the system's development. The proponents also used PHP for the back-end, MySQL for the database, and HTML, CSS, and Bootstrap for the front-end. There are four main users of the system. The Super Admin can keep track of and enable or disable the evaluation's current year, semester, and time frame. The Departmental Admin can be added, edited, deleted, and have their password changed by the Super Admin. The Departmental Administrator or the Administrator can add, update, and delete teachers, students, and courses. They can also keep track of students' course registrations and enable or disable courses that are currently in session. The Teachers, where they can only see their evaluated result for their instructed courses. Last is the Student, students can see their registered courses, can evaluate those courses which are enabled and not evaluated.

Local Systems

A local system was conducted in Laguna College of Business and Arts (LCBA) named Online Faculty Evaluation System for Laguna College of Business and Arts by Garcia et al (2015). In this project, it will have four different user types: the Human Resource Department, the faculty members, the students and the administrator. With the help of this system, the Human Resource Department would find ease in determining the efficacy of the instructors based on the evaluation made by the students themselves. The system created was designed to have an administrator that would handle the entire system. The Human Resource Department will be the one to implement the system to the students. The system is programmed to generate evaluation reports that contains the total number of students who made the evaluation and will produce hard copies of evaluation report to each faculty member.

Another similar system was conducted by Salas (2015) which is the Web and Mobile-Based Performance Evaluation System. The project specifically sought to target the criteria and policies of the traditional evaluation method of some higher education institutions based on the ISO 9126 standards which ensure the quality of all software-intensive products. In order to develop the project, PHP was used along with JavaScript and CSS programming languages. WAMP package was used to utilize the Apache Server as web server. MySQL as administrator and phpMyAdmin as database.

Another similar system named The Development of Automated Faculty Performance Evaluation System (AFPE) was conducted by Rico et al (2017) at the Pamantasan ng Lungsod ng Marikina. The system is web-based which the evaluator (students, co-teachers, and supervisor) will use the computer to evaluate the teacher instead of a manual. The system was made using PHP Framework that includes security features and form validation. The system can automatically compute the performance ratings from the students and generate a summary of results and reports and can only be accessed by the assigned faculty and the school administrator.

Another study entitled “Web-based Faculty Evaluation System of Apayao State College, Philippines” was conducted by Taguiam (2016). This web-based program enhances the current evaluation system to facilitate efficient conduct and to supplement the traditional paper-based system. The Multi-Methodical Approach in Information Systems Development was used in the development of the project, which included data modeling and theory building. The PHP and MySQL platforms were used to create the project. In this study, the researcher determines the input and output data to the system, then studies the process that must be done with these data and looks at the constraints on the software's behavior.

A study by Orozco (2020) carried out a further local investigation at the MIT College of Computer Studies in Biñan, Laguna. Rapid Application Development (RAD) is used as the approach model in the study titled "Web-based Thesis/Capstone Project Defense Evaluation System of the CCS Biñan" to construct the system. In order to test and evaluate the program for potential improvements and better project use, planning, data collection, and coding are done concurrently.

A study by Sarmiento (2020) used the Rapid Application Development technique to create "Online Teacher Evaluation System using PHP," another system they built. The created system automatically generates reports and evaluates teachers. Students, professors, and administrators will all be distinct types of users for the system. The technology enables students to register for an account and grade their instructors online. To access their ratings, teachers will register and create accounts. The system's administrator will be a member of the HR division.

A capstone project by Eguid et al. (2022) The Student Academic Evaluation and Advising System employed a prototyping model. The demands of first- through fourth-year students are the main focus of the study. The department chair can automate the manual process of evaluating the students with the help of the study. To enable the software development team to produce
mock-ups and prototypes of screens, reports, and processes, clarify demands or design elements in the researchers' model. For the department chair to evaluate the students, the system can provide reports and information on topic requirements. The system was developed using HTML, CSS, and JavaScript for the front end and PHP and MySQL for the back end.

An online teaching performance evaluation system is implemented at the Far Eastern University in a local study by Anito (2008) titled “Online Teaching Performance Evaluation System: A Tool for Quality Education” to address the predictable complex issues the university encountered when using a manual teaching performance evaluation. A web-based program called FEU-TPES was created to enable online faculty evaluation through the University's intranet. The Active Server Pages (ASP) programming language, the MySQL 5.1 database, the Microsoft Internet Information Services (IIS) 6.0 web server, and Internet Explorer 6.0 or later versions were all used in the development of this system.

Garcia et al. (2015) created another similar system called the "Online Faculty Evaluation System for Laguna College of Business and Arts." The Human Resource Department, faculty members, and students themselves made up the three user categories of the Laguna College of Business and Arts' (LCBA) Online Faculty Evaluation System. The approach allowed the Human Resource Department to quickly assess the faculty members' ability to teach by looking at the evaluations submitted by the students. The technology is able to provide reports that include the total number of students who completed evaluations and print printed copies of the evaluation reports for each faculty member.

Harem et al. (2019) completed a study at Eastern Samar State University titled Web-Based Faculty Evaluation with Recommendation Support Module utilizing Analytic Hierarchy Process Algorithm. The proposal system seeks to offer a Web-based client and admin panel that is driven and gives students the chance to take part in the evaluation of faculty members so that both the students and the supervisor can offer their views and ideas. One of the features in the created system that supports and strengthens the capability of the Human Resource Officer and the Human Resource Department (HRD) to decide what steps should be taken to improve the performance of faculty members in the classroom is the Recommendation Support Module using Analytic Hierarchy Process Algorithm (AHP).

Another study was conducted by Pablo II and Granados (2016) entitled "Web-based Instructor Evaluation System: A Fuzzy Rule-Based Approach" uses the Agile model in developing the project. Different software and technologies are used by the system's supporters to construct it. CodeIgniter was used as a primary framework and the PHP (Hypertext Preprocessor) as the scripting language. It also includes a ton of default aids for things like handling forms files, arrays, strings, directories, and more. The layout, colors, and fonts of the system are designed using CSS, or cascading style sheets. The system's database management is handled by MySQL, Notepad++ was used as the text editor. The system that would allow the VPAA, Deans, Program Heads, Instructors, and students to assess the MCC Instructors online at the CISCO Laboratory under the Dean's or its representative. To start the procedure, the HRMO created each user account in the system. The VPAA may assess the deans and professors of MCC whenever there is an internet connection, if necessary. The Program Director and the Instructors can be evaluated by the Dean, the Dean and the VPAA cannot be evaluated by the Program Head, but the Instructors can. The peer assessment tool allows instructors to rate their fellow instructors, while the self-evaluation feature allows instructors to rate themselves. Only the teacher is subject to student evaluation. The student's student number can be used as the username to log into the system.

1.2 Theoretical Background

This capstone project was based on the Technology Acceptance Model (TAM) theory by Fred Davis which seeks to model how users come to accept and use a technology. The end point where people use technology is the actual system use. Behavioral intention is an aspect that hints the people upon using the technology. The behavioral intention (BI) is influenced by the attitude (A) which is the overall impression of the technology. According to the model, when users are presented with new technology, a variety of aspects can influence the choice on how and when to use it, most notably:

Perceived Usefulness (PU) - Fred Davis described this as “the degree to which a person believes that using a particular system would enhance their job performance”. This simply means that whether someone identifies the technology to be useful or not based on what they want to do.

Perceived Ease-of-Use (PEOU) – this was defined by Davis as “the degree to which a person believes that using particular system would be free from effort”. Barriers conquered if the users find the technology easy to use. On the other hand, if the technology is difficult to use has a complex user interface, users won’t have a positive attitude towards it.

External variables such as social influence are considered as a crucial aspect to define the attitude. People will have the attitude and intention to use the technology when these things (TAM) are evident. However, as quantified by Davis, perception may alter depending on the age and gender because everyone is different.
1.3 Technical Background

Overview of the Present System

The present rating system employed by university administrators to review teaching performance is of the manual kind, in which students utilize paper questionnaires to assess their teachers through ratings. Following the students’ evaluations, the evaluation forms will be manually gathered, tallied, and totaled, which is time intensive and prone to error. During the epidemic, schools were obliged to adopt a new method of instruction: flexible learning, in which students attend courses online. A different way of assessing instructors was used in that situation. Google Forms, a component of Google’s online app suite of tools, is used by school administrators to assess surveys through mobile or web browser, which students may use to rate their professors. Though the process is electronic, however, there are still limited functions about the web application and since it is part of Google’s suite, the university has no access to the database and has no complete control of the application.

Overview of the Proposed System.

The proposed system is a complete web-based application named Student’s Rating System for Teachers, which allows administrators to add colleges, departments, courses, classes, subjects, and users. It will also allow the administrator to design evaluation criteria and questionnaires, as well as assign teachers to be evaluated by students. It also allows students to rate and comment on the performance of their teachers. After the students submit their ratings, the system will automatically generate an evaluation report for the department chairs to consider when assigning teacher schedules.

To develop the system, these following technologies were used by the proponents:

- **PHP:** Hypertext Preprocessor is a widely-used open source and is known as a general-purpose scripting language that can be used to develop a dynamic and interactive websites.
- **HTML:** Since the project is a complete web-based application, Hypertext Markup Language is used to create visuals and describe the structure of the webpages.
• **CSS**- In developing the system, Cascading Style Sheet is used to describe the presentation of the Webpages, including the system’s layout, the combination of colors and the fonts.

• **MySQL**- a relational database management system that uses SQL (Structured Query Language). The application is used for a variety of tasks, including data warehousing, e-commerce, and logging. However, the most common application for MySQL is as a web database.

• **XAMPP**- This was used as a local host to make a local web server that can be used by the proponents in testing and deployment functions. Since most actual web server deployments use the same components as XAMPP, it makes transitioning from a local test server to a live server possible.

• **VISUAL STUDIO CODE IDE**- As the system’s development involves a series of text-editing, debugging, compiling and testing. The proponents are using Visual Studio Code IDE, a streamlined code editor that consolidates and provides a quick code-build-debug cycle.

1.4 Statement of the Problem

Cebu Technological University- Tuburan Campus used the manual process of evaluating the teachers during the physical classes from which the students use paper questionnaires to evaluate the performance of their teachers. After the students evaluated, the papers were gathered, tallied and counted manually which takes a lot of time and is prone to errors. During the flexible learning which the students and teachers used the online classes, the school later used Google Forms, a part Google’s online app suite of tools which helps the administrators analyze surveys using mobile or web browser where students can use to evaluate their teachers. However, Google Form is not that efficient because the application has limited tools and functions that are essential in managing the evaluation and keeping track of the data stored. Aside from that, it would take a lot of time in generating reports and finalizing the results of the evaluation.

Specifically, this study answered the following questions:

1. What are the problems met by the existing rating system in terms of:
 1.1. Creating evaluation questionnaires;
 1.2. Rating a teacher;
 1.3. Generating individual reports;
 1.4. Storing of reports;

2. What improvements can be added to the existing rating system in terms of:
 2.1. Usability
 2.2. User-friendliness

3. Based on the findings, what kind of system could be considered and proposed?

1.5 Objectives of the Project

The objective of this study is to achieve the quality education by means of implementing a student’s rating system for teachers as a tool for teachers scheduling consideration to be used in Cebu Technological University- Tuburan, Campus.

Specifically, the proposed system will:

1. Develop a web-based system for the students to rate the classroom management and the teaching performance of their instructors.
2. Generate a summary of reports based on the ratings given by the students per instructor.
3. Reduce the amount of time in gathering and analyzing the answers for the survey questionnaires given by the students.
4. ...
The system has six different users: the administrator, the students, the teachers, the department chairs, the college deans and the dean of instruction. The administrator user is responsible for managing the data in the system the users, the colleges, the departments, the courses, the classes, the subjects, the evaluation and the reports. Student users are only allowed to rate the faculties and give comments. The teachers can only view their individual reports. Department chair users can only view the individual reports of all the teachers that belong to their department. College Deans can only view the individual reports of the teachers under their colleges. The Dean of Instruction can view all the individual reports of the teachers inside the campus. Only the students can rate their teachers. Based on the gathered ratings given by the student evaluators, the proposed system will rank the teachers. Thus, this system will be limited in the use of the CTU-Tuburan students, teachers and administrators only. Any other forms of algorithms aside from the evaluation are not included in the study. The restriction of this study is, users who are not registered in the system are not allowed to evaluate and also users cannot access the system without Internet Connection.

1.7 Significance of the Study

This study will be beneficial to the following:

- The University Administrators. The university administrators are the ones who will be assisted in this study as this will lessen the burden of them in creating a manual Student’s Evaluation on Teachers.
- Department Chairpersons and College Deans. The proposed system will benefit the department chairs in and college deans in considering the scheduling of teachers.
- Students. Students will be given a chance to rate based on their instructor’s performances. They will also be given the opportunity to include comments based on the teaching efficiency of their instructors and give recommendations for a more effective and efficient learning.
- Teachers. Based on the reports from the ratings given by the students, teachers will be able to improve their performances and work on the areas or subject where they need improvement.
- Future Researchers. The time disbursed for the enhancement of the system is limited, that is why it will be a chance for the subsequent batch of researchers to consider the project and comply with the critical changes and updates.

1.8 Project Highlights

Aside from having an effortless gathering and a more accurate analysis of the evaluation data, it will also help in an efficient way of monitoring the performance and determining the strengths and weaknesses of the teachers making the department chair choose for a perfect subject and schedule that will suit for their skills and strengths at ease. The system will also help the students get their educational need and providing a quality education that helps in developing their individual ideas and improving their learning habits.

These are the highlights of the project:

- Managing of Evaluation - the Administrator user can create and manage the criteria and the questionnaires of the evaluation at the same time, be able to restrict an evaluation. This means that a student can only rate a teacher that he is assigned to. The administrator can also make a default evaluation, which means that you can only evaluate the teacher at the certain school year and semester as well as create criteria and the evaluation questionnaire inside a specific semester and academic year.
- Rating of Teacher – This feature can only be used by the students. Students can rate their teachers from 5 being the highest and 1 being the lowest. Students can also include comments about the performance of their teachers. The ratings and comments made by the students are strictly confidential. To promote confidentiality, only the Administrator can be allowed by the system to view the ratings and the comments being given by the students.
- Generating of Evaluation Reports - Since the teachers, department chairs, college deans and the dean of instruction cannot view the ratings, the administrator will generate a report and send it to them. Teachers can only view their
individual reports. Department chairs can view the reports of the teachers that is under their departments. College deans can view the reports of the teachers that is under their colleges and the dean of instruction can view the reports of all the teachers inside the campus. Reports are automatically generated and updated every time a student submits his ratings and comments.

- Managing the Colleges, Departments, Courses, Classes and Subjects – The system lets the administrator manage the colleges, inside the colleges are the list of departments, inside the department are the list of courses, inside the courses are the list of classes, and then inside are the list of subjects. The system allows the administrator to manage all the data being stored in this module, the administrator can delete, edit and add data to the system.

1.9 Methodology

This phase described the methodology and processes for carrying out the research endeavor. It discusses research methods and methodologies, systems development methodology, requirements analysis, requirement documentation, software design, development and testing, implementation strategy, and implementation outcomes.

Research Methods

The proponents used descriptive qualitative approaches to collect as much data as possible in order to record all of the processes in the event. In this strategy, the interview is a dialogue in which questions are asked to obtain the necessary information. It assists proponents in understanding the procedures of the present rating system inside the institution and identifying the challenges encountered with the current system. This assists proponents in developing a new system that addresses the concerns encountered.

Data Gathering Instruments

The following strategies were employed by the proponents to collect data:

Interview- During the requirements collecting stage, the proponents conduct an online interview with possible system users who provide resources regarding the present system's flow.

Observation- The proponents conduct an investigation of the existing system in order to get additional ideas on how to create the proposed system. Based on this observation, the proponents identified several issues that needed to be addressed, and these issues were used to improve the process of the present system.

System Development Process

The Agile Model is a part of the Software Development Life Cycle (SDLC) Model that was used in the development of the system in creating targets, monitoring performance, and validating points at various stages of the development life cycle to improve the ultimate product's quality.

![The Agile Model of SDLC](image)

The proponents follow the Agile Model, one of the major models of the Software Development Life Cycle in the development of the system. Agile modeling is a best-practices-based technique for modeling and documenting software systems. It is a set of ideals and concepts that may be used to guide a software development project.

1.10 Requirements Specifications

This phase provides a detailed overview the parameters and goals of the software and defines the nature of a project, software, or application. The proponents of the system utilizes three different types of feasibility studies. Operational Feasibility, Technical Feasibility and Schedule Feasibility are measured to ensure the efficiency of the resources in terms of the technology used and the procedural plan in developing the system.
Operational Feasibility

The current system will address difficulties experienced by the current rating systems and make use of opportunities uncovered in the scope definition, and how well it meets the requirements in the system analysis phase. The proponents examine the willingness of the organization to support the proposed system before implementing it.

1.11 Requirements Modelling

Requirements modeling was used in the project to identify and establish the best practices required to create an effective model. It outlines the way you intend to put the practices into action.

Input-Process-Output

The Input-Process-Output model is a popular method used by the proponents to describe the structure of the information processing program in system analysis.

![Input-Process-Output Diagram](image)

Figure 3 is the Input-Process-Output Diagram that shows the processes of turning all the inputs including the login details, the user details, the college details, courses and subject details, the evaluation details, the questionnaire details and the restriction details which are all necessary for the internal system to transform and process the inputs and generate it into outputs and reports.

Process

The system needs the participation of the students, the teachers, the department chairs, the college deans, and the dean of instruction to improve the quality of teaching and learning for all students. The system requires strong internet connection for uninterrupted activity.

Control

To execute the processes of the system, it will require several inputs from the users.

![Sequence Diagram for the Student](image)
Figure 4 is the sequence diagram of the system showing all the sequences of activities, requests and responses which are involved in the processes inside the student’s account. “STUDENT” represents the actor of the system and the objects are enclosed with a rectangle. The sequence starts with the student creating an account (if a student does not have an account yet) followed by the logging in of the system after the student successfully log in the system. Students can now choose and evaluate a teacher. Student user submits evaluation response and the system will process the student’s response and the web server will record it.

![Sequence Diagram for the Administrator](image)

Fig.5. Sequence Diagram for the Administrator

Figure 5 shows the sequence of the activities inside the admin’s account in the system. The sequence starts with the admin logging in the system, if the login information is verified, the admin can proceed to the next step which is to create a college, department, course, class, and subject. After that, the admin can now create an evaluation, add criteria and questions and add restrictions to the evaluation. The admin can also view the reports and the rankings of the teachers based on the scores given by the students.

![Activity Diagram for the Students](image)

Fig.6. Activity Diagram for the Students
Figure 6 shows the activity diagram for the students. It represents the workflow of stepwise activities and actions that happens in the student’s account in the system with support of choices, iterations and concurrences. For a more accurate representation of workflows, the proponents categorized the diagram by the modules of the system.

Figure 7 shows the activity diagram for the administrator. It represents the workflow of stepwise activities and actions that happens in the administrator’s account in the system with support of choices, iterations and concurrences. For a more accurate representation of workflows, the proponents categorized the activities based on the modules included in the administrator’s account.
Shown in Figure 8 is the Use Case Diagram of the proposed system containing six different kind of users: the student; the teacher; the department chair the college dean, the dean of instruction and the system administrator. The use case diagram shows what these users can do in the system. Students can login, signup, rate teachers and add comments. Teachers can login and view individual reports. Department chairs can login and view individual reports of all teachers within the department. College deans can login and view individual reports of all teachers within the college. Dean of instruction can login and view individual reports of all teachers within the campus. System administrator can login, manage the ratings, manage the users, manage the rankings and at the same time, can generate reports to be submitted to the department chairs and dean.

1.12 Analysis

This part of the study will include all the cost and benefits of the resources that are being used to develop this system along with the risk assessment and analysis that can be used to reduce the chances of having risks in the implementation of the system.

Risk Assessment/ Analysis

The proponents examines all the risks found during the development phase of the system. Along with it are the preventive measures on how to reduce the probability of occurrence and the person responsible for maintaining the wellness of the system.

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Risk Impact</th>
<th>How to limit?</th>
<th>Person Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure of the System Server</td>
<td>High- This will lead to failure of the whole system</td>
<td>System should have a backup server to secure the data.</td>
<td>System Developer</td>
</tr>
<tr>
<td>Unsecured Accounts</td>
<td>High- This will lead to stealing of information.</td>
<td>System should provide proper user authentication</td>
<td>System Developer</td>
</tr>
<tr>
<td>Unsecured Evaluator’s Identity</td>
<td>Low- This will lead to loss of trust in the system.</td>
<td>System should promote evaluator’s anonymity</td>
<td>System Developer</td>
</tr>
<tr>
<td>Poor Internet Connection</td>
<td>High- This will lead to improper working of some functions</td>
<td>Secure a strong internet connection</td>
<td>Users</td>
</tr>
</tbody>
</table>

Table 1 shows the Risk Assessment/Analysis. All the risk factors that might be possible to happen during the development process and the implementation of the proposed system are assessed and analyzed and the actions that are needed to do in order to prevent or mitigate the occurrence as well as the actions needed to perform in order to address the errors and system failures. This will help the system developers and the system administrator in keeping and maintaining the system.

1.13 Design

This part of the study is composed of the user interface design, including the reports and forms available in the system, the data design and the network design that was used by the proponents for the better understanding and guide in the implementation of the project.

Outputs and User Interface Design

This phase includes the screenshots of the output and the user interface design which is composed of all the reports, forms and the webpages that is present in the system.
Figure 9 shows the login page of the system where the users can login using their login credentials, username and a password. It also provides the link in the register page for those users who do not have an account.

Figure 10 is the register page of the system. This is where the student users create their accounts if they do not have any account yet in the system by filling out the forms with the necessary information needed.
Figure 11 shows the page where the system administrator can add a college. The system administrator can add a college and a college description. This page also enables the system administrator to edit or delete the department. The system also allows the system administrator to view the courses under a specific department by clicking the view button on the actions column.

![Create Questionnaire Page](image1)

Fig.12. Create Questionnaire Page

Figure 12 shows the page where the administrator creates questionnaire and choose a specific criteria that best suits the question. The system also allow the administrator to edit and/or delete a specific question. After the questions being created, the admin can set a restriction by clicking the “Set up restriction” button below.

![Ratings Page](image2)

Fig.13. Ratings Page

Figure 13 shows the page where the Student can rate a teacher based on a scale of 1 to 5 where 5 being the highest and 1 being the lowest. Students can also add comments which will be reflected on the generated reports.
This page is where the user can view the individual reports of the teachers based on the ratings given by the students. All comments that are submitted by the students will also be reflected on the reports page.

1.14 Data Design

This phase depicts the various types of data stored in the system, as well as how the proponents use the relationship between each data and the various ways the data are grouped and organized. A data design is a blueprint or roadmap that allows for a more in-depth understanding of the data stored in the system.

![SRST Entity Relationship Diagram](image)

Shown in Figure 15 is the Entity Relationship Diagram of the proposed system. This depicts the relationships among the entities within the system. Enclosed in rectangular shapes are the entities involved in the system together with their attributes. Connecting the entities together are the connections.

1.15 Development

This phase covers the development plan for the project. It also includes the hardware, the software and the program requirements for the system to operate. This phase also includes the deployment and the test plan for the project.

Software Specifications

The table below lists all the software requirement specifications needed for the system to operate.
Table 2 shows all of the software requirements needed in the development of the system. Components include XAMPP for the localhost, Google Chrome for the browser and Visual Studio Code 2019 for the IDE together with their specifications and minimum requirements.

Hardware Specifications

The proponents listed all the hardware requirements needed for the development of the system and the components needed for the system to operate which includes the processor, the RAM, the display or the monitor solution, the hard drive, the internet connection as well as the operating system.

Table 3 shows the hardware requirements for the development of the system. Components include processor, RAM, display resolution, hard drive, internet connection and the operating system together with their components.

1.16 Testing

Software testing enables the developers to measure the quality of the system before deploying it. Every single unit were examined in order to determine what the system can do and how well it does it.
Unit Testing

<table>
<thead>
<tr>
<th>Test Case No.</th>
<th>Test Name</th>
<th>Test Reference</th>
<th>Test Priority</th>
<th>Test Input</th>
<th>Test Expected Output</th>
<th>Test Verdict</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT01</td>
<td>Login</td>
<td>Account Module</td>
<td>1</td>
<td>Email and Password</td>
<td>Login successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT02</td>
<td>Register</td>
<td>Accounts Module</td>
<td>2</td>
<td>First Name, Middle Name, Last Name, College, Department, Course, Year and Section, User type Email and Password</td>
<td>Registered Successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT03</td>
<td>Create College</td>
<td>Colleges Module</td>
<td>3</td>
<td>College Name and College Details</td>
<td>College created successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT04</td>
<td>Create Departments</td>
<td>Colleges Module</td>
<td>4</td>
<td>Department Name and Department Details</td>
<td>Submission Folder Added successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT05</td>
<td>Create Courses</td>
<td>Colleges Module</td>
<td>5</td>
<td>Course Name and Course Details</td>
<td>Assigned Document successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT06</td>
<td>Create Year and Section</td>
<td>Colleges Module</td>
<td>6</td>
<td>Year and Section</td>
<td>Shared successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT07</td>
<td>Create Subjects</td>
<td>Colleges Module</td>
<td>7</td>
<td>Subject Name and Subject Details</td>
<td>Subject created successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT08</td>
<td>Create Evaluation</td>
<td>Evaluation Module</td>
<td>8</td>
<td>School Year and Semester</td>
<td>Evaluation created successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT09</td>
<td>Create Criteria</td>
<td>Evaluation Module</td>
<td>9</td>
<td>Criteria</td>
<td>Criteria created successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT10</td>
<td>Create Questionnaires</td>
<td>Evaluation Module</td>
<td>10</td>
<td>Question and Criteria</td>
<td>Questions created successfully</td>
<td>Passed</td>
</tr>
<tr>
<td>UT11</td>
<td>Rate Teachers</td>
<td>Evaluation Module</td>
<td>11</td>
<td>Answers and Comments</td>
<td>Answers Submitted</td>
<td>Passed</td>
</tr>
<tr>
<td>UT12</td>
<td>Upload Header</td>
<td>Upload Header Module</td>
<td>13</td>
<td>Image</td>
<td>Image uploaded</td>
<td>Passed</td>
</tr>
<tr>
<td>UT13</td>
<td>View reports</td>
<td>Reports Module</td>
<td>12</td>
<td>Name, Subject, Department and College</td>
<td>Reports Displayed</td>
<td>Passed</td>
</tr>
</tbody>
</table>

Table 4 shows the summary of the conducted unit testing on the system. In this phase every individual units or components of software are tested. The primary goal of the unit testing is to ensure that each unit of software code works as intended.

Integration Testing

<table>
<thead>
<tr>
<th>Test Case No.</th>
<th>Test Name</th>
<th>Test Reference</th>
<th>Test Priority</th>
<th>Test Input</th>
<th>Test Expected Output</th>
<th>Test Verdict</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO1</td>
<td>Accounts Module</td>
<td>UT02</td>
<td>1</td>
<td>First Name, Middle Name, Last Name, College, Avatar, User type/ Email and Password College Name, Department Name, Course Name, Year and Section, Subject Name</td>
<td>System will store the user’s inputted account information</td>
<td>Passed</td>
</tr>
<tr>
<td>ITO2</td>
<td>Colleges Module</td>
<td>UTO3-UTO7</td>
<td>2</td>
<td>Evaluation Name, Criteria Name, Questions, Answers, Comments</td>
<td>System will store the created College information</td>
<td>Passed</td>
</tr>
<tr>
<td>ITO3</td>
<td>Evaluation Module</td>
<td>UTO8-UTO10</td>
<td>3</td>
<td>Evaluation Name, Criteria Name, Questions, Answers, Comments</td>
<td>System will display all the information inputted by the users.</td>
<td>Passed</td>
</tr>
<tr>
<td>IT04</td>
<td>Ratings</td>
<td>UT011</td>
<td>4</td>
<td>Teacher Name and Subject Name</td>
<td>System will display the individual reports of a teacher</td>
<td>Passed</td>
</tr>
<tr>
<td>IT05</td>
<td>Upload Header</td>
<td>UT012</td>
<td>5</td>
<td>Image</td>
<td>System will display the uploaded image in the reports page</td>
<td>Passed</td>
</tr>
<tr>
<td>IT06</td>
<td>Reports</td>
<td>UT013</td>
<td>6</td>
<td>Teacher Name and Subject Name</td>
<td>System will display the individual reports of a teacher</td>
<td>Passed</td>
</tr>
</tbody>
</table>
Table 5 shows the integration testing summary of the project. This software testing stage is where the different units, modules and components of the system are tested and combined as a group. The table shows the Test name, the reference, the inputs, the expected outputs and the test verdict. This stage of testing is conducted to evaluate the compliance of a system or a component with specified functional requirements.

System/Alpha Testing

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Test Suite Name</th>
<th>Description</th>
<th>Steps</th>
<th>Test Data</th>
<th>Expected Result</th>
<th>Actual Result</th>
<th>Pass/Fail</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>Create Account</td>
<td>This will allow the users to create an account before logging into the system</td>
<td>Go to the “register here” link in the login page and fill out the information needed</td>
<td>Click submit</td>
<td>User is added successfully</td>
<td>User information are displayed</td>
<td>Pass</td>
<td>Good</td>
</tr>
<tr>
<td>ST2</td>
<td>Create College</td>
<td>The system lets the admin add a college, department, course, and subject</td>
<td>Go to the college page and click add college.</td>
<td>Click Save</td>
<td>College added successfully</td>
<td>College details are displayed on the list</td>
<td>Pass</td>
<td>Good</td>
</tr>
<tr>
<td>ST3</td>
<td>Create an Evaluation</td>
<td>Administrator can create an evaluation, add criteria and questionnaires</td>
<td>Go to the Evaluation page and add evaluation, click the view button to add a criteria and questions. Login as student and click on the name of the teacher you want to evaluate, fill out the questionnaire forms and click submit</td>
<td>Click save</td>
<td>Evaluation Added successfully</td>
<td>Evaluation Details, Criteria and Questions are added</td>
<td>Pass</td>
<td>Good</td>
</tr>
<tr>
<td>ST4</td>
<td>Rate Teachers</td>
<td>Students can rate the teachers and add comments</td>
<td>Login as student and click on the name of the teacher you want to evaluate, fill out the questionnaire forms and click submit</td>
<td>Click submit</td>
<td>Answers Added</td>
<td>Answers Added</td>
<td>Pass</td>
<td>Good</td>
</tr>
<tr>
<td>ST5</td>
<td>Upload Header</td>
<td>Admin can browse the computer and add a header</td>
<td>Go to the navigation bar and click “upload header”, choose a file to upload and click the upload icon. Admin must go to the reports page to view and share the reports. Teachers, Chairs and Deans will see the reports already after logging in.</td>
<td>Click the upload icon</td>
<td>Header Uploaded</td>
<td>Header Uploaded Successfully, Check reports here</td>
<td>Pass</td>
<td>Good</td>
</tr>
<tr>
<td>ST6</td>
<td>View reports</td>
<td>Admin can view the individual reports. Other users of the system can only view individual reports.</td>
<td>Click view, click share</td>
<td>Reports shared successfully</td>
<td>Individual reports are displayed</td>
<td>Individual reports are displayed</td>
<td>Pass</td>
<td>Good</td>
</tr>
</tbody>
</table>

Table 6 shows the system level testing of the project. The proponents of evaluates how the various components of the system interact together and meets all of its requirements, which includes technical and functional requirements by utilizing various test types including the performance and usability of the system. This testing phase usually verifies that the system performs the task as expected.

Funding

We would like to declare that no external funding was received for this research. All resources and materials used in this study were provided by the researchers and their respective institutions. We have no conflicts of interest to disclose, and this study was conducted with the sole purpose of advancing scientific knowledge in the field. Any opinions or conclusions presented in this paper are solely those of the authors.

Conflicts Of Interest

The authors declare no conflicts of interest in this study.

Acknowledgment

The researchers are grateful to Cebu Technological University Tuburan Campus specially the BS Information Technology Department for the opportunity to conduct this study.
References

