Self-Attention Enhanced Dual BiGRU for Arabic Fake News Detection
Main Article Content
Abstract
The rapid proliferation of social media platforms has greatly amplified the dissemination of fake news, representing significant obstacles to public trust and evidence-based decision-making, particularly for the Arabic-speaking population. Meeting the challenge of Arabic fake news detection is a problem compounded by the complex morphological nature of the language, as well as limited resources. This study presents a hybrid deep learning framework that integrates two Bidirectional Gated Recurrent Units (BiGRUs) along with an attention mechanism for efficiently detecting misinformation in Arabic news. The method leverages FastText word embeddings for disambiguating the intricate semantics of the Arabic language. The model is meticulously crafted to account for the morphological variability and contextual sensitivities of Arabic, with the extensive Arabic fake news dataset (AFND) being used for training and testing. Experimental findings show that our model performs better with an accuracy of 91.92%, outperforming current state-of-the-art approaches. The findings highlight the effectiveness of integrating advanced neural architectures and tailored preprocessing for Arabic, paving the way for more robust and interpretable fake news detection systems in low-resource languages.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
[1] B. Hu, Z. Mao, and Y. Zhang, “An overview of fake news detection: From a new perspective,” Fundamental Research, vol. 5, no. 1, pp. 332–346, Jan. 2025, doi: 10.1016/j.fmre.2024.01.017.
[2] J. A. Nasir, O. S. Khan, and I. Varlamis, “Fake news detection: A hybrid CNN-RNN based deep learning approach,” International Journal of Information Management Data Insights, vol. 1, no. 1, p. 100007, Apr. 2021, doi: 10.1016/j.jjimei.2020.100007.
[3] Z. Jin, J. Cao, H. Guo, Y. Zhang, Y. Wang, and J. Luo, “Detection and Analysis of 2016 US Presidential Election Related Rumors on Twitter,” 2017, pp. 14–24. doi: 10.1007/978-3-319-60240-0_2.
[4] M. Samadi, M. Mousavian, and S. Momtazi, “Deep contextualized text representation and learning for fake news detection,” Inf Process Manag, vol. 58, no. 6, p. 102723, Nov. 2021, doi: 10.1016/j.ipm.2021.102723.
[5] F. Alam et al., “Fighting the COVID-19 Infodemic in Social Media: A Holistic Perspective and a Call to Arms,” Proceedings of the International AAAI Conference on Web and Social Media, vol. 15, pp. 913–922, May 2021, doi: 10.1609/icwsm.v15i1.18114.
[6] R. S. Matti and S. A. Yousif, “Leveraging Arabic BERT for High-Accuracy Fake News Detection,” Iraqi Journal of Science, pp. 751–764, Feb. 2025, doi: 10.24996/ijs.2025.66.2.18.
[7] H. Himdi, N. Zamzami, F. Najar, M. Alrehaili, and N. Bouguila, “Arabic Fake News Dataset Development: Humans and AI-Generated Contributions,” IEEE Access, vol. 13, pp. 62234–62253, 2025, doi: 10.1109/ACCESS.2025.3556376.
[8] S. Alyoubi, M. Kalkatawi, and F. Abukhodair, “The Detection of Fake News in Arabic Tweets Using Deep Learning,” Applied Sciences, vol. 13, no. 14, p. 8209, Jul. 2023, doi: 10.3390/app13148209.
[9] A. AlSajri, “Challenges in Translating Arabic Literary Texts Using Artificial Intelligence Techniques,” EDRAAK, vol. 2023, pp. 5–10, Feb. 2023, doi: 10.70470/EDRAAK/2023/002.
[10] I. kh. Alnabrisi and M. kh. Saad, “Detect Arabic fake news through deep learning models and Transformers,” Expert Syst Appl, vol. 251, p. 123997, Oct. 2024, doi: 10.1016/j.eswa.2024.123997.
[11] B. AlEsawi and M. Haqi Al-Tai, “Detecting Arabic Misinformation Using an Attention Mechanism-Based Model,” Iraqi Journal For Computer Science and Mathematics, vol. 5, no. 1, pp. 285–298, Feb. 2024, doi: 10.52866/ijcsm.2024.05.01.020.
[12] E. S. Albtoush, K. H. Gan, and S. A. A. Alrababa, “Fake news detection: state-of-the-art review and advances with attention to Arabic language aspects,” PeerJ Comput Sci, vol. 11, p. e2693, Mar. 2025, doi: 10.7717/peerj-cs.2693.
[13] A. B. Nassif, A. Elnagar, O. Elgendy, and Y. Afadar, “Arabic fake news detection based on deep contextualized embedding models,” Neural Comput Appl, vol. 34, no. 18, pp. 16019–16032, Sep. 2022, doi: 10.1007/s00521-022-07206-4.
[14] N. Abdelhakim Othman, D. S. Elzanfaly, and M. M. M. Elhawary, “Arabic Fake News Detection Using Deep Learning,” IEEE Access, vol. 12, pp. 122363–122376, 2024, doi: 10.1109/ACCESS.2024.3451128.
[15] S. Y. B. SAHAR F. SABBEH, “Arabic news credibility on Twitter: an enhanced model using hybrid features,” J Theor Appl Inf Technol, vol. 96, no. 8, pp. 2327–2338, Apr. 2023.
[16] K. M. Fouad, S. F. Sabbeh, and W. Medhat, “Arabic Fake News Detection Using Deep Learning,” Computers, Materials & Continua, vol. 71, no. 2, pp. 3647–3665, 2022, doi: 10.32604/cmc.2022.021449.
[17] H. Himdi, G. Weir, F. Assiri, and H. Al-Barhamtoshy, “Arabic Fake News Detection Based on Textual Analysis,” Arab J Sci Eng, vol. 47, no. 8, pp. 10453–10469, Aug. 2022, doi: 10.1007/s13369-021-06449-y.
[18] A. Khalil, M. Jarrah, M. Aldwairi, and Y. Jararweh, “Detecting Arabic Fake News Using Machine Learning,” in 2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA), IEEE, Nov. 2021, pp. 171–177. doi: 10.1109/IDSTA53674.2021.9660811.
[19] T. A. Wotaifi and B. N. Dhannoon, “Attention Mechanism Based on a Pre-trained Model for Improving Arabic Fake News Predictions,” Iraqi Journal of Science, pp. 6041–6054, Nov. 2023, doi: 10.24996/ijs.2023.64.11.45.
[20] A. Khalil, M. Jarrah, and M. Aldwairi, “Hybrid Neural Network Models for Detecting Fake News Articles,” Human-Centric Intelligent Systems, vol. 4, no. 1, pp. 136–146, Dec. 2023, doi: 10.1007/s44230-023-00055-x.
[21] E. Aljohani, “Enhancing Arabic Fake News Detection: Evaluating Data Balancing Techniques Across Multiple Machine Learning Models,” Engineering, Technology & Applied Science Research, vol. 14, no. 4, pp. 15947–15956, Aug. 2024, doi: 10.48084/etasr.8019.
[22] N. Abdelhakim Othman, D. S. Elzanfaly, and M. M. M. Elhawary, “Arabic Fake News Detection Using Deep Learning,” IEEE Access, vol. 12, pp. 122363–122376, 2024, doi: 10.1109/ACCESS.2024.3451128.
[23] R. M. Albalawi, A. T. Jamal, A. O. Khadidos, and A. M. Alhothali, “Multimodal Arabic Rumors Detection,” IEEE Access, vol. 11, pp. 9716–9730, 2023, doi: 10.1109/ACCESS.2023.3240373.
[24] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov, “FastText.zip: Compressing text classification models,” Dec. 2016.
[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Jan. 2013.
[26] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word Representation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Stroudsburg, PA, USA: Association for Computational Linguistics, 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
[27] T. Huang, Z. Xu, P. Yu, J. Yi, and X. Xu, “A Hybrid Transformer Model for Fake News Detection: Leveraging Bayesian Optimization and Bidirectional Recurrent Unit,” Feb. 2025.
[28] J. Alghamdi, Y. Lin, and S. Luo, “Enhancing hierarchical attention networks with CNN and stylistic features for fake news detection,” Expert Syst Appl, vol. 257, p. 125024, Dec. 2024, doi: 10.1016/j.eswa.2024.125024.
[29] M. F. C. N. dos S. M. Y. B. X. B. Z. Y. B. Zhouhan Lin, “A Structured Self-attentive Sentence Embedding,” arXiv preprint arXiv:1703.03130 , 2017.
[30] A. Khalil, M. Jarrah, M. Aldwairi, and M. Jaradat, “AFND: Arabic fake news dataset for the detection and classification of articles credibility,” Data Brief, vol. 42, p. 108141, Jun. 2022, doi: 10.1016/j.dib.2022.108141.
[31] O. ’Nasser, Z. ’Salam, K. ’Dima, T. ’Mai, O. ’Bashar, A. ’Go, I. ’Fadhl, E. ’Alexander, E. ’Nizar, H. ’Ossama, “CAMeL Tools: An Open Source Python Toolkit for Arabic Natural Language Processing,” in Proceedings of the Twelfth Language Resources and Evaluation Conference, Marseille, France: European Language Resources Association, May 2020, pp. 7022–7032.
[32] M. Aljanabi, “Assessing the Arabic Parsing Capabilities of ChatGPT and Cloude: An Expert-Based Comparative Study,” Mesopotamian Journal of Arabic Language Studies, no. 2024, pp. 16–23, Feb. 2024, doi: 10.58496/MJALS/2024/002.
[33] H. M. Turki et al., “Arabic fake news detection using hybrid contextual features,” International Journal of Electrical and Computer Engineering (IJECE), vol. 15, no. 1, p. 836, Feb. 2025, doi: 10.11591/ijece.v15i1.pp836-845.