Enhanced Android Malware Detection through Artificial Neural Networks Technique
Main Article Content
Abstract
Android devices are rapidly being used, which makes it easy for the malware threat to rise to higher levels. This ever-growing problem has prompted the need to enhance detection systems as far as these devices are concerned. Standard techniques of machine learning (ML) are sufficient from the point of view of their speed for searching patterns and behaviors of contemporary malware; however, it is more important to have effectively enhanced methods. The purpose of this paper is to expand the utilization of Android malware identification via artificial neural networks (ANNs) and compare its efficiency with that of other ML methods. An ANN is used in this study, and the results are compared against those of several other types of ML, including logistic regression (LR), k-nearest neighbors (KNN), extremely randomized trees (extra trees), gradient boosting (GBM), adaptive boosting (AdaBoost), and categorical boosting (CatBoost). The six evaluation values include training accuracy, testing accuracy, average accuracy, precision, recall and the F1 score. The ANN model performed well, with training and testing accuracies of 0. 99 and an average accuracy of 0. 99, precision of 0. 99, recall of 0. 98, whereas the F1 score, which is an average of both precision and recall, was 0. 99. Related studies based on conventional ML methods are also highly efficient, with some accuracy and an F1 score of 0. 95 and 0. 96. On the other hand, the ANN model ranked the best in the assessed measures. Thus, this study focuses on the reliability of ANNs for improving mobile security systems against next-generation malware and their applicability to secured Android smartphones. The reason behind the high accuracy of the ANN model is the enhanced learning ability of the ANN, which helps it learn the characteristics and dynamics of malware better than traditional ML models do.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
[1] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A Survey on malware analysis and mitigation techniques,” Comput. Sci. Rev., vol. 32, pp. 1–23, May 2019, doi: 10.1016/j.cosrev.2019.01.002.
[2] O. Aslan and R. Samet, “A Comprehensive Review on Malware Detection Approaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020, doi: 10.1109/ACCESS.2019.2963724.
[3] J. Singh and J. Singh, “A survey on machine learning-based malware detection in executable files,” J. Syst. Archit., vol. 112, p. 101861, 2021, doi: 10.1016/j.sysarc.2020.101861.
[4] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A Survey on Machine Learning against Hardware Trojan Attacks: Recent Advances and Challenges,” IEEE Access, vol. 8, pp. 10796–10826, 2020, doi: 10.1109/ACCESS.2020.2965016.
[5] A. Alqahtani and F. T. Sheldon, “A Survey of Crypto Ransomware Attack Detection Methodologies: An Evolving Outlook,” Sensors, vol. 22, no. 5, p. 1837, 2022, doi: 10.3390/s22051837.
[6] K. M. E. NarasimaMallikarajunan, S. R. Preethi, S. Selvalakshmi, and N. Nithish, “Detection of spyware in software using virtual environment,” in Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, IEEE, 2019, pp. 1138–1142. doi: 10.1109/icoei.2019.8862547.
[7] E. Arul and A. Punidha, “Adware Attack Detection on IoT Devices Using Deep Logistic Regression SVM (DL-SVM-IoT),” in Congress on Intelligent Systems: Proceedings of CIS 2020, Volume 1, Springer, 2021, pp. 167–176. doi: 10.1007/978-981-33-6981-8_14.
[8] I. Guedes, M. Martins, and C. S. Cardoso, “Exploring the determinants of victimization and fear of online identity theft: an empirical study,” Secur. J., vol. 36, no. 3, pp. 472–497, 2023, doi: 10.1057/s41284-022-00350-5.
[9] N. K. Gyamfi and J.-D. Abdulai, “Bank Fraud Detection Using Support Vector Machine,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018, pp. 37–41. doi: 10.1109/IEMCON.2018.8614994.
[10] X. M. Zhang, Q. L. Han, X. Ge, and L. Ding, “Resilient Control Design Based on a Sampled-Data Model for a Class of Networked Control Systems under Denial-of-Service Attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3616–3626, 2020, doi: 10.1109/TCYB.2019.2956137.
[11] R. Rivera, L. Pazmiño, F. Becerra, and J. Barriga, “An Analysis of Cyber Espionage Process,” in Smart Innovation, Systems and Technologies, Springer, 2022, pp. 3–14. doi: 10.1007/978-981-16-4884-7_1.
[12] J. DiMaggio, “The art of cyberwarfare : an investigator’s guide to espionage, ransomware, and organized cybercrime,” p. 254.
[13] M. Wade, “Digital hostages: Leveraging ransomware attacks in cyberspace,” Bus. Horiz., vol. 64, no. 6, pp. 787–797, 2021, doi: 10.1016/j.bushor.2021.07.014.
[14] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak, and M. K. Khan, “Ransomware: Recent advances, analysis, challenges and future research directions,” Comput. Secur., vol. 111, p. 102490, 2021, doi: https://doi.org/10.1016/j.cose.2021.102490.
[15] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez, “A survey of iot-enabled cyberattacks: Assessing attack paths to critical infrastructures and services,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3453–3495, 2018, doi: 10.1109/COMST.2018.2855563.
[16] K. Bakour, H. M. Ünver, and R. Ghanem, “The Android malware detection systems between hope and reality,” SN Appl. Sci., vol. 1, no. 9, p. 1120, Sep. 2019, doi: 10.1007/s42452-019-1124-x.
[17] A. Qamar, A. Karim, and V. Chang, “Mobile malware attacks: Review, taxonomy & future directions,” Futur. Gener. Comput. Syst., vol. 97, pp. 887–909, Aug. 2019, doi: 10.1016/j.future.2019.03.007.
[18] A. V. Pandit and D. Mondal, “Real-Time Malware Detection on IoT Devices using Behavior-Based Analysis and Neural Networks,” Res. J. Comput. Syst. Eng., vol. 4, no. 2, pp. 117–129, Dec. 2023, doi: 10.52710/rjcse.82.
[19] A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Comput. Electr. Eng., vol. 118, p. 109409, 2024, doi: 10.1016/j.compeleceng.2024.109409.
[20] M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), K. Daimi and A. Al Sadoon, Eds., Cham: Springer Nature Switzerland, 2024, pp. 120–131.
[21] L. A. E. Al-saeedi et al., “Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks ,” Mesopotamian J. CyberSecurity, vol. 4, no. 2 SE-Articles, pp. 129–142, Aug. 2024, doi: 10.58496/MJCS/2024/0012.
[22] A. Naway and Y. LI, “Using Deep Neural Network for Android Malware Detection.” 2019.
[23] H. Alkahtani and T. H. H. Aldhyani, “Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices,” Sensors, vol. 22, no. 6, p. 2268, Mar. 2022, doi: 10.3390/s22062268.
[24] S. Hosseini, A. E. Nezhad, and H. Seilani, “Android malware classification using convolutional neural network and LSTM,” J. Comput. Virol. Hacking Tech., vol. 17, no. 4, pp. 307–318, Dec. 2021, doi: 10.1007/s11416-021-00385-z.
[25] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and M. Conti, “Similarity-based Android malware detection using Hamming distance of static binary features,” Futur. Gener. Comput. Syst., vol. 105, pp. 230–247, 2020, doi: 10.1016/j.future.2019.11.034.
[26] D. S. Rani, K. Gnaneshwar, K. Sampurnima Pattem, S. Sekhar, G. B. Krishna, and S. Kakarla, “Advancing Android Malware Detection with BioSentinel Neural Network using Hybrid Deep Learning Techniques,” in 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, Feb. 2024, pp. 1754–1760. doi: 10.23919/INDIACom61295.2024.10498302.
[27] A. A. Almazroi and N. Ayub, “Deep learning hybridization for improved malware detection in smart Internet of Things,” Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-57864-8.
[28] M. A. Hossain and M. S. Islam, “Enhanced detection of obfuscated malware in memory dumps: a machine learning approach for advanced cybersecurity,” Cybersecurity, vol. 7, no. 1, 2024, doi: 10.1186/s42400-024-00205-z.
[29] A. Mahindru et al., “PermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection,” Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-60982-y.
[30] S. I. Mihali and Ștefania L. Niță, “Credit Card Fraud Detection based on Random Forest Model,” in 2024 17th International Conference on Development and Application Systems, DAS 2024 - Proceedings, 2024, pp. 111–114. doi: 10.1109/DAS61944.2024.10541240.
[31] B. K. Sedraoui, A. Benmachiche, A. Makhlouf, and C. Chemam, “Intrusion Detection with deep learning: A literature review,” in PAIS 2024 - Proceedings: 6th International Conference on Pattern Analysis and Intelligent Systems, 2024, pp. 1–8. doi: 10.1109/PAIS62114.2024.10541191.
[32] A. Sheneamer, “Visualized Malware Images using Hybrid Ensemble Deep Transfer Learning,” in Proceedings - 2024 7th International Conference on Information and Computer Technologies, ICICT 2024, 2024, pp. 7–12. doi: 10.1109/ICICT62343.2024.00008.
[33] W. Z. A. Zakaria, N. M. K. M. Alta, M. F. Abdollah, O. Abdollah, and S. M. W. M. S. M. M. Yassin, “Early Detection of Windows Cryptographic Ransomware Based on PreAttack API Calls Features and Machine Learning,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 39, no. 2, pp. 110–131, 2024, doi: 10.37934/araset.39.2.110131.
[34] R. A. Yunmar, S. S. Kusumawardani, W. Widyawan, and F. Mohsen, “Detecting Android Malware by Mining Enhanced System Call Graphs,” Int. J. Comput. Netw. Inf. Secur., vol. 16, no. 2, pp. 28–41, 2024, doi: 10.5815/ijcnis.2024.02.03.
[35] S. salman Qasim and S. M. NSAIF , Trans., “Advancements in Time Series-Based Detection Systems for Distributed Denial-of-Service (DDoS) Attacks: A Comprehensive Review”, BJN, vol. 2024, pp. 9–17, Jan. 2024, doi: 10.58496/BJN/2024/002.
[36] C. C. Moreira, D. C. Moreira, and C. Sales, “A comprehensive analysis combining structural features for detection of new ransomware families,” J. Inf. Secur. Appl., vol. 81, 2024, doi: 10.1016/j.jisa.2024.103716.
[37] S. A. Hamad, Q. Z. Sheng, and W. E. Zhang, Security Framework for The Internet of Things Applications. CRC Press, 2024. doi: 10.1201/9781003478683.
[38] H. Zhao, C. Zi, Y. Liu, C. Zhang, Y. Zhou, and J. Li, “Weakly Supervised Anomaly Detection via Knowledge-Data Alignment,” in WWW 2024 - Proceedings of the ACM Web Conference, Association for Computing Machinery, Inc, 2024, pp. 4083–4094. doi: 10.1145/3589334.3645429.
[39] K. Shaukat, S. Luo, and V. Varadharajan, “A novel machine learning approach for detecting first-time-appeared malware,” Eng. Appl. Artif. Intell., vol. 131, p. 107801, 2024, doi: 10.1016/j.engappai.2023.107801.
[40] R. Liao and S. Wang, “Malicious domain detection based on semi-supervised learning and parameter optimization,” IET Commun., vol. 18, no. 6, pp. 386–397, 2024, doi: 10.1049/cmu2.12739.
[41] M. Fleming and O. Olukoya, “A temporal analysis and evaluation of fuzzy hashing algorithms for Android malware analysis,” Forensic Sci. Int. Digit. Investig., vol. 49, 2024, doi: 10.1016/j.fsidi.2024.301770.
[42] A. Mondal, A. Ghosh, S. Karmakar, M. H. Mahalat, S. Roy, and B. Sen, “Identification of Hardware Trojan in Gate-Level Netlist,” J. Circuits, Syst. Comput., vol. 33, no. 9, 2024, doi: 10.1142/S0218126624300058.
[43] A. Saihood, M. A. Al-Shaher, and M. A. Fadhel, “A New Tiger Beetle Algorithm for Cybersecurity, Medical Image Segmentation and Other Global Problems Optimization,” Mesopotamian J. CyberSecurity, vol. 2024, pp. 17–46, 2024, doi: 10.58496/MJCS/2024/003.
[44] A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.
[45] A. Galli, V. La Gatta, V. Moscato, M. Postiglione, and G. Sperlì, “Explainability in AI-based behavioral malware detection systems,” Comput. Secur., vol. 141, 2024, doi: 10.1016/j.cose.2024.103842.
[46] S. Gulmez, A. Gorgulu Kakisim, and I. Sogukpinar, “XRan: Explainable deep learning-based ransomware detection using dynamic analysis,” Comput. Secur., vol. 139, 2024, doi: 10.1016/j.cose.2024.103703.
[47] J. Mitchell, N. McLaughlin, and J. Martinez-del-Rincon, “Generating sparse explanations for malicious Android opcode sequences using hierarchical LIME,” Comput. Secur., vol. 137, 2024, doi: 10.1016/j.cose.2023.103637.
[48] S. R. Sindiramutty et al., Explainable AI for Cybersecurity. 2024. doi: 10.4018/978-1-6684-6361-1.ch002.
[49] O. Arreche, T. R. Guntur, J. W. Roberts, and M. Abdallah, “E-XAI: Evaluating Black-Box Explainable AI Frameworks for Network Intrusion Detection,” IEEE Access, vol. 12, pp. 23954–23988, 2024, doi: 10.1109/ACCESS.2024.3365140.
[50] D. Zaman and M. Mazinani, “Cybersecurity in Smart Grids: Protecting Critical Infrastructure from Cyber Attacks”, SHIFRA, vol. 2023, pp. 86–94, Aug. 2023, doi: 10.70470/SHIFRA/2023/010.
[51] M. AL-Essa, G. Andresini, A. Appice, and D. Malerba, “PANACEA: a neural model ensemble for cyber-threat detection,” Mach. Learn., 2024, doi: 10.1007/s10994-023-06470-2.
[52] PCSL, “Android Malware Detection Test,” 2014. https://www.kaggle.com/datasets/dannyrevaldo/android-malware-detection-dataset
[53] E. Camizuli and E. J. Carranza, “Exploratory Data Analysis,” in The Encyclopedia of Archaeological Sciences, Wiley, 2018, pp. 1–7. doi: 10.1002/9781119188230.saseas0271.
[54] M. G. M. Abdolrasol et al., “Artificial Neural Networks Based Optimization Techniques: A Review,” Electronics, vol. 10, no. 21, 2021, doi: 10.3390/electronics10212689.
[55] F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-Saeedi, “Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 4, no. 1, pp. 4–16, 2024, doi: 10.58496/MJCS/2024/002.
[56] H. M. Abdulfattah, K. Y. Layth, and A. A. Raheem, “Enhancing Security and Performance in Vehicular Adhoc Networks: A Machine Learning Approach to Combat Adversarial Attacks,” Mesopotamian J. Comput. Sci., vol. 2024, pp. 122–133, 2024, doi: 10.58496/MJCSC/2024/010.
[57] Y. L. Khaleel, M. A. Habeeb, A. S. Albahri, T. Al-Quraishi, O. S. Albahri, and A. H. Alamoodi, “Network and cybersecurity applications of defense in adversarial attacks: A state-of-the-art using machine learning and deep learning methods,” J. Intell. Syst., vol. 33, no. 1, 2024, doi: 10.1515/jisys-2024-0153.
[58] Y. L. Khaleel, H. M. Abdulfattah, and H. Alnabulsi, “Adversarial Attacks in Machine Learning: Key Insights and Defense Approaches,” Appl. Data Sci. Anal., vol. 2024, pp. 121–147, 2024, doi: 10.58496/ADSA/2024/011.