Enhanced TEA Algorithm Performance using Affine Transformation and Chaotic Arnold Map

Main Article Content

Nada Hussein M. Ali
Mays M. Hoobi
Sura Abed Sarab Hussien

Abstract

In digital images, protecting sensitive visual information against unauthorized access is considered a critical issue; robust encryption methods are the best solution to preserve such information. This paper introduces a model designed to enhance the performance of the Tiny Encryption Algorithm (TEA) in encrypting images. Two approaches have been suggested for the image cipher process as a preprocessing step before applying the Tiny Encryption Algorithm (TEA). The step mentioned earlier aims to de-correlate and weaken adjacent pixel values as a preparation process before the encryption process. The first approach suggests an Affine transformation for image encryption at two layers, utilizing two different key sets for each layer. The dual encryption process achieves high diffusion and confusion properties for the cipher process. The second approach proposed a chaotic Arnold map before the Tiny Encryption Algorithm (TEA) process. Various statistical measures are used, such as Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Image Quality Index (IQI). For example, the lower PSNR, SSIM, and IQI values indicate better results for test image Lina of the second approach. The obtained results for the previous measures of the second approach are 8.5449, 0.0008, and -0.0061, compared to the first approach, 8.5529, 0.0054, -0.0015, respectively. Moreover, key space and time analysis are used to assess the encryption process. The outcomes show a high-key space 32,768*2128 ) and a slight encryption time of 130 milliseconds for the first approach and 1862 milliseconds for the second approach. 

Article Details

Section

Articles

How to Cite

[1]
N. . Hussein M. Ali, M. . M. Hoobi, and S. . Abed Sarab Hussien , Trans., “Enhanced TEA Algorithm Performance using Affine Transformation and Chaotic Arnold Map”, Mesopotamian Journal of Computer Science, vol. 2025, pp. 341–354, Oct. 2025, doi: 10.58496/MJCSC/2025/022.

References

[1] S. M. Hameed, Z. H. Ali, G. K. Al-Khafaji, and S. Ahmed, “Chaos-based color image steganography method using 3D cat map,” Iraqi J. Sci., vol. 62, no. 9, pp. 3220–3227, 2021, doi: 10.24996/ijs.2021.62.9.34 .

[2] S. G. Mohammed and N. S. Al-Mothafar, “Evaluation of Rijndael algorithm for audio encryption by brute force attack,” J. Eng., vol. 30, no. 11, pp. 128–141, 2024, doi: 10.31026/j.eng.2024.11.08 .

[3] N. H. M. Ali, M. M. Hoobi, and D. F. Saffo, “Development of robust and efficient symmetric random keys model based on the Latin square matrix,” Mesopotamian J. Cybersecurity, vol. 4, no. 3, pp. 203–215, 2024.

[4] M. Rana, Q. Mamun, and R. Islam, “Balancing security and efficiency: A power consumption analysis of a lightweight block cipher,” Electronics, vol. 13, no. 21, pp. 1–35, 2024, doi: 10.3390/electronics13214325 .

[5] A. F. Shimal, B. H. Helal, and A. T. Hashim, “Extended of TEA (ETEA): A 256 bits block cipher algorithm for image encryption,” Int. J. Electr. Comput. Eng. (IJECE), vol. 11, no. 5, pp. 3996–4007, Oct. 2021, doi: 10.11591/ijece.v11i5.pp3996-4007 .

[6] D. Virmani, N. Beniwal, G. Mandal, and S. Talwa, “Enhanced Tiny Encryption Algorithm with Embedding (ETEA),” Int. J. Comput. Inf. Technol., vol. 7, no. 1, pp. 493–499, 2013.

[7] O. R. Oluwade, O. M. Olaniyi, Y. S. Abdulsalam, L. A. Ajao, and F. B. Osang, “ETEASH—An enhanced Tiny Encryption Algorithm for secured smart home,” Covenant J. Informatics Commun. Technol., vol. 9, no. 1, pp. 1–15, 2021.

[8] A. N. K. Telem, C. Feudjio, B. Ramakrishnan, H. B. Fotsin, and K. Rajagopal, “A simple image encryption based on binary image affine transformation and zigzag process,” Complexity, vol. 2022, pp. 1–22, 2022, doi: 10.1155/2022/3865820 .

[9] A. Ihsan and N. Doğan, “Improved affine encryption algorithm for color images using LFSR and XOR encryption,” Multimedia Tools Appl., vol. 82, pp. 7621–7637, 2023, doi: 10.1007/s11042-022-13727-w .

[10] J. C. T. Arroyo and A. J. P. Delima, “A keystream-based affine cipher for dynamic encryption,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 7, pp. 2919–2922, 2020, doi: 10.30534/ijeter/2020/06872020 .

[11] M. Khan, S. S. Jamal, M. M. Hazzazi, K. M. Ali, I. Hussain, and M. Asif, “An efficient image encryption scheme based on double affine substitution box and chaotic system,” Integration, vol. 81, pp. 108–122, 2021, doi: 10.1016/j.vlsi.2021.05.007 .

[12] A. A. Arab, M. J. B. Rostami, and B. Ghavami, “An image encryption algorithm using the combination of chaotic maps,” Optik, vol. 261, p. 169122, 2022, doi: 10.1016/j.ijleo.2022.169122 .

[13] A. K. Yadav and V. P. Vishwakarma, “An integrated Arnold and Bessel function-based image encryption on blockchain,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 4, pp. 779–803, 2024, doi: 10.14569/IJACSA.2024.0150482 .

[14] J. Wu, Z. Liu, J. Wang, L. Hu, and S. Liu, “A compact image encryption system based on Arnold,” Multimedia Tools Appl., vol. 80, pp. 2647–2661, 2021, doi: 10.1007/s11042-020-09828-z .

[15] S. Sabir and V. Guleria, “Multi-layer color image encryption using random matrix affine cipher, RP2DFrHT and 2D Arnold map,” Multimedia Tools Appl., vol. 80, no. 18, pp. 27829–27853, 2021, doi: 10.1007/s11042-021-11003-x .

[16] C. L. Babulal, “AL-TEA: Alternative TEA algorithm for healthcare image in IoT,” Int. J. Recent Innov. Trends Comput. Commun., vol. 10, no. 6, pp. 24–30, 2022, doi: 10.17762/ijritcc.v10i6.5620 .

[17] D. E. Mfungo, X. Yongjin, Y. Xian, and X. Wang, “A novel image encryption scheme using chaotic maps and fuzzy numbers for secure transmission of information,” Appl. Sci., vol. 13, no. 12, pp. 1–25, 2023, doi: 10.3390/app13127113 .

[18] A. Z. Hussain and M. A. A. Khodher, “Medical image encryption using multi chaotic maps,” TELKOMNIKA Telecommun. Comput. Electron. Control, vol. 21, no. 3, pp. 556–565, Jun. 2023.

[19] J. Ayad and M. A. Jalil, “Robust color image encryption using 3D chaotic maps and S-box algorithms,” Babylonian J. Netw., vol. 2023, pp. 148–161, 2023.

[20] K. Pandey and D. Sharma, “Novel image encryption algorithm utilizing hybrid chaotic maps and elliptic curve cryptography with genetic algorithm,” J. Inf. Secur. Appl., vol. 89, p. 103995, 2025, doi: 10.1016/j.jisa.2025.103995 .

[21] Y. Al Najjar, “Comparative analysis of image quality assessment metrics: MSE, PSNR, SSIM, and FSIM,” Int. J. Sci. Res. (IJSR), vol. 13, no. 3, pp. 110–114, 2024, doi: 10.21275/SR24302013533 .

[22] S. A. S. Hussien, T. A. S. Hussien, and M. A. Noori, “Proposed algorithm for encrypted data hiding in video stream based on frame random distribution,” Iraqi J. Sci., vol. 62, no. 9, pp. 3243–3254, 2021, doi: 10.24996/ijs.2021.62.9.37 .

[23] S. A. Noaman, B. N. Al-din Abed, and A. M. S. Ahmed, “Lossless encoding method based on a mathematical model and mapping pixel technique for healthcare applications,” Iraqi J. Sci., vol. 65, no. 12, pp. 7183–7193, 2024, doi: 10.24996/ijs.2024.65.12.32 .

[24] A. N. Ismael, “A comparative study of image enhancement techniques for natural images,” J. Al-Qadisiyah Comput. Sci. Math., vol. 14, no. 4, pp. 53–65, 2022, doi: 10.29304/jqcm.2022.14.4.1086 .

[25] S. M. Robeson and C. J. Willmott, “Decomposition of the mean absolute error (MAE) into systematic and unsystematic components,” PLoS ONE, vol. 18, no. 2, pp. 1–8, 2023, doi: 10.1371/journal.pone.0279774 .

[26] F. Osorio, R. Vallejos, W. Barraza, S. M. Ojeda, and M. A. Landi, “Statistical estimation of the structural similarity index for image quality assessment,” Signal Image Video Process., vol. 16, pp. 1035–1042, 2022, doi: 10.1007/s11760-021-02051-9 .

[27] S. M. R. Islam, X. Huang, and K. Le, “Novel image quality index for image quality assessment,” in Proc. Int. Conf. Neural Inf. Process. (ICONIP), Berlin, Germany: Springer, 2013, vol. 8228, pp. 549–556.

[28] A. Kaur, L. Kaur, and S. Gupta, “Image recognition using coefficient of correlation and structural SIMilarity index in uncontrolled environment,” Int. J. Comput. Appl., vol. 59, no. 5, pp. 1–5, 2012.

[29] J. Ayad, G. Ali, W. Ullah, and W. Robert, “Encryption of color images utilizing cascading 3D chaotic maps with S-box algorithms,” SHIFRA, vol. 2023, pp. 95–107, 2023.