Predictive Modeling and Analysis of Monkeypox Outbreaks Using Machine Learning Techniques

Main Article Content

Rand Mohanad Maher
Saba Hussein Rashid
Mustafa Abdulfattah Habeeb
Yahya Layth Khaleel
Fatimah N. Ameen

Abstract

As Monkeypox becomes a prevalent public health issue, it is important to develop advanced detection and prediction methods that will inform public health strategies that govern Monkeypox prevention. This study employs machine learning methods to analyze and predict Monkeypox case trends. In particular, features on new cases and deaths were applied to regression and classification models to predict the total number of Monkeypox cases and new case probablity. The regression models that were applied included Linear regression (LR), Decision Tree Regression (DT), Random Forest Regression (RF), Support Vector Regression (SVR), and K-Nearest Neighbor Regression (KNN), with total cases as the outcome. Among regression methods, the Random Forest Regression model performed the best with a Mean Squared Error (MSE) of 92,425,437.81 and R-squared of 0.06, indeicating moderate predictive ability. The methods were also similar to predict new cases, and once again the same algorithms were applied to classification methods, including Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) classification, and each model achieved an accuracy score of one (1.00), indicating no new cases would be missed. These results provide evidence that these are effective machine learning methods, and random forests in particular provides the best predictive capability for Monkeypox case trend analysis. The results illustrate how these models can assist data-driven decisions in public health, and evidence-based preparedness and response for future Monkeypox outbreaks.

Article Details

Section

Articles

How to Cite

Predictive Modeling and Analysis of Monkeypox Outbreaks Using Machine Learning Techniques (R. M. . Maher, S. H. . Rashid, M. A. Habeeb, Y. L. . Khaleel, & F. N. . Ameen , Trans.). (2025). Applied Data Science and Analysis, 2025, 94-111. https://doi.org/10.58496/ADSA/2025/006

References

[1] T. J. Mohammed et al., “A Systematic Review of Artificial Intelligence in Orthopaedic Disease Detection: A Taxonomy for Analysis and Trustworthiness Evaluation,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, p. 303, 2024, doi: 10.1007/s44196-024-00718-y.

[2] Z. T. Al-Qaysi et al., “A comprehensive review of deep learning power in steady-state visual evoked potentials,” Neural Comput. Appl., pp. 1–24, 2024.

[3] M. A. Fadhel et al., “Navigating the metaverse: unraveling the impact of artificial intelligence—a comprehensive review and gap analysis,” Artif. Intell. Rev., vol. 57, no. 10, p. 264, 2024, doi: 10.1007/s10462-024-10881-5.

[4] M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), K. Daimi and A. Al Sadoon, Eds., Cham: Springer Nature Switzerland, 2024, pp. 120–131.

[5] F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-Saeedi, “Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 4, no. 1, 2024, doi: 10.58496/MJCS/2024/002.

[6] A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Comput. Electr. Eng., vol. 118, p. 109409, 2024, doi: 10.1016/j.compeleceng.2024.109409.

[7] M. A. Alsalem et al., “Evaluation of trustworthy artificial intelligent healthcare applications using multi-criteria decision-making approach,” Expert Syst. Appl., vol. 246, p. 123066, 2024, doi: 10.1016/j.eswa.2023.123066.

[8] F. N. A. Yahya Layth Khaleel, Fadya A. Habeeb , Mustafa Abdulfattah Habeeb, “Leveraging Artificial Intelligent for Optimized Crop Production: An ANN-Based Approach,” Mesopotamian J. Comput. Sci., vol. 2025, pp. 1–16, 2025, doi: 10.58496/MJCSC/2025/001.

[9] M. A. Habeeb, Y. L. Khaleel, R. D. Ismail, Z. T. Al-Qaysi, and A. F. N., “Deep Learning Approaches for Gender Classification from Facial Images,” Mesopotamian J. Big Data, vol. 2024, pp. 185–198, 2024, doi: 10.58496/MJBD/2024/013.

[10] H. M. Abdulfattah, K. Y. Layth, and A. A. Raheem, “Enhancing Security and Performance in Vehicular Adhoc Networks: A Machine Learning Approach to Combat Adversarial Attacks,” Mesopotamian J. Comput. Sci., vol. 2024, pp. 122–133, 2024, doi: 10.58496/MJCSC/2024/010.

[11] L. A. E. Al-saeedi et al., “Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks ,” Mesopotamian J. CyberSecurity, vol. 4, no. 2 SE-Articles, pp. 129–142, Aug. 2024, doi: 10.58496/MJCS/2024/0012.

[12] A. H. Alamoodi et al., “A Novel Evaluation Framework for Medical LLMs: Combining Fuzzy Logic and MCDM for Medical Relation and Clinical Concept Extraction,” J. Med. Syst., vol. 48, no. 1, p. 81, 2024, doi: 10.1007/s10916-024-02090-y.

[13] R. A. Hamid et al., “Fuzzy Decision-Making Framework for Evaluating Hybrid Detection Models of Trauma Patients,” Expert Syst., vol. 42, no. 3, p. e70005, 2025, doi: https://doi.org/10.1111/exsy.70005.

[14] A. S. Albahri et al., “Prioritizing complex health levels beyond autism triage using fuzzy multi-criteria decision-making,” Complex Intell. Syst., 2024, doi: 10.1007/s40747-024-01432-0.

[15] J. G. Rizk, G. Lippi, B. M. Henry, D. N. Forthal, and Y. Rizk, “Prevention and Treatment of Monkeypox,” Drugs, vol. 82, no. 9, pp. 957–963, 2022, doi: 10.1007/s40265-022-01742-y.

[16] O. Mitjà et al., “Monkeypox,” Lancet, vol. 401, no. 10370, pp. 60–74, Jan. 2023, doi: 10.1016/S0140-6736(22)02075-X.

[17] A. Karagoz et al., “Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis.,” J. Infect. Public Health, vol. 16, no. 4, pp. 531–541, Apr. 2023, doi: 10.1016/j.jiph.2023.02.003.

[18] W. H. Organization, Managing epidemics: key facts about major deadly diseases. World Health Organization, 2023.

[19] A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.

[20] A. Heidari, N. Jafari Navimipour, M. Unal, and S. Toumaj, “Machine learning applications for COVID-19 outbreak management,” Neural Comput. Appl., vol. 34, no. 18, pp. 15313–15348, Sep. 2022, doi: 10.1007/s00521-022-07424-w.

[21] Y. L. Khaleel, M. A. Habeeb, and G. G. Shayea, “Integrating Image Data Fusion and ResNet Method for Accurate Fish Freshness Classification,” Iraqi J. Comput. Sci. Math., vol. 5, no. 4, p. 21, 2024.

[22] Y. L. Khaleel, M. A. Habeeb, and M. A. Ahmed, “Refrigerator optimization: Leveraging RESnet method for enhanced storage efficiency,” AIP Conf. Proc., vol. 3264, no. 1, p. 40009, Mar. 2025, doi: 10.1063/5.0258460.

[23] F. N. A. Fadya A Habeeb, Mustafa Abdulfattah Habeeb, Yahya Layth Khaleel, “Global Analysis and Prediction of CO2 and Greenhouse Gas Emissions across Continents,” Applied Data Science and Analysis, vol. 2024 SE-. pp. 173–188. doi: 10.58496/ADSA/2024/014.

[24] A. Rodríguez et al., “Machine learning for data-centric epidemic forecasting,” Nat. Mach. Intell., Sep. 2024, doi: 10.1038/s42256-024-00895-7.

[25] W.-C. Wang et al., “Classification of community-acquired outbreaks for the global transmission of COVID-19: Machine learning and statistical model analysis,” J. Formos. Med. Assoc., vol. 120, pp. S26–S37, Jun. 2021, doi: 10.1016/j.jfma.2021.05.010.

[26] F. Di Gennaro et al., “Human Monkeypox: A Comprehensive Narrative Review and Analysis of the Public Health Implications,” Microorganisms, vol. 10, no. 8, p. 1633, Aug. 2022, doi: 10.3390/microorganisms10081633.

[27] J. Bedi, D. Vijay, P. Dhaka, J. Singh Gill, and S. Barbuddhe, “Emergency preparedness for public health threats, surveillance, modelling & forecasting,” Indian J. Med. Res., vol. 153, no. 3, p. 287, 2021, doi: 10.4103/ijmr.IJMR_653_21.

[28] A. S. Albahri et al., “A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion,” Inf. Fusion, vol. 96, pp. 156–191, 2023, doi: 10.1016/j.inffus.2023.03.008.

[29] J. N. K. Wah, “Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation,” J. Robot. Surg., vol. 19, no. 1, p. 47, 2025, doi: 10.1007/s11701-024-02205-0.

[30] R. D. Ismail, Q. A. Hameed, M. A. Habeeb, Y. L. Khaleel, and F. N. Ameen, “Deep Learning Model for Hand Movement Rehabilitation,” Mesopotamian J. Comput. Sci., vol. 2024, no. SE-Articles, pp. 134–149, Oct. 2024, doi: 10.58496/MJCSC/2024/011.

[31] Y. L. Khaleel, M. A. Habeeb, and B. Rabab, “Emerging Trends in Applying Artificial Intelligence to Monkeypox Disease: A Bibliometric Analysis,” Appl. Data Sci. Anal., vol. 2024, pp. 148–164, 2024, doi: 10.58496/ADSA/2024/012.

[32] S. S. Joudar et al., “Artificial intelligence-based approaches for improving the diagnosis, triage, and prioritization of autism spectrum disorder: a systematic review of current trends and open issues,” Artif. Intell. Rev., vol. 56, no. 1, pp. 53–117, 2023, doi: 10.1007/s10462-023-10536-x.

[33] A.-E. ODELOUI, T. O. C. EDOH, J. T. Hounsou, J. Degila, and A. S. Albahri, “Distribution of Prevalence and Impact Factors of Cardiovascular Diseases in Benin,” Work, vol. 20, p. 20, 2024.

[34] Q. P. Vuong, “The potential for artificial intelligence and machine learning in healthcare: the future of healthcare through smart technologies,” 2024.

[35] Z. Ahmed, K. Mohamed, S. Zeeshan, and X. Dong, “Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine,” Database, vol. 2020, p. baaa010, 2020, doi: 10.1093/database/baaa010.

[36] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on Convolutional Neural Networks (CNN) in vegetation remote sensing,” ISPRS J. Photogramm. Remote Sens., vol. 173, pp. 24–49, 2021, doi: https://doi.org/10.1016/j.isprsjprs.2020.12.010.

[37] P. Kuppusamy and V. C. Bharathi, “Human abnormal behavior detection using CNNs in crowded and uncrowded surveillance – A survey,” Meas. Sensors, vol. 24, p. 100510, 2022, doi: https://doi.org/10.1016/j.measen.2022.100510.

[38] R. Najjar, “Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging,” Diagnostics, vol. 13, no. 17, 2023, doi: 10.3390/diagnostics13172760.

[39] G. Rea et al., “Beyond Visual Interpretation: Quantitative Analysis and Artificial Intelligence in Interstitial Lung Disease Diagnosis ‘Expanding Horizons in Radiology,’” Diagnostics, vol. 13, no. 14, 2023, doi: 10.3390/diagnostics13142333.

[40] Z. Li, K. C. Koban, T. L. Schenck, R. E. Giunta, Q. Li, and Y. Sun, “Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends,” J. Clin. Med., vol. 11, no. 22, 2022, doi: 10.3390/jcm11226826.

[41] B. Acs, M. Rantalainen, and J. Hartman, “Artificial intelligence as the next step towards precision pathology,” J. Intern. Med., vol. 288, no. 1, pp. 62–81, 2020, doi: https://doi.org/10.1111/joim.13030.

[42] K. Bera, K. A. Schalper, D. L. Rimm, V. Velcheti, and A. Madabhushi, “Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology,” Nat. Rev. Clin. Oncol., vol. 16, no. 11, pp. 703–715, 2019, doi: 10.1038/s41571-019-0252-y.

[43] S. Chan, V. Reddy, B. Myers, Q. Thibodeaux, N. Brownstone, and W. Liao, “Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations,” Dermatol. Ther. (Heidelb)., vol. 10, no. 3, pp. 365–386, 2020, doi: 10.1007/s13555-020-00372-0.

[44] P. Zang, T. T. Hormel, T. S. Hwang, S. T. Bailey, D. Huang, and Y. Jia, “Deep-Learning–Aided Diagnosis of Diabetic Retinopathy, Age-Related Macular Degeneration, and Glaucoma Based on Structural and Angiographic OCT,” Ophthalmol. Sci., vol. 3, no. 1, p. 100245, 2023, doi: https://doi.org/10.1016/j.xops.2022.100245.

[45] K. B. Johnson et al., “Precision Medicine, AI, and the Future of Personalized Health Care,” Clin. Transl. Sci., vol. 14, no. 1, pp. 86–93, 2021, doi: 10.1111/cts.12884.

[46] Y.-H. Li, Y.-L. Li, M.-Y. Wei, and G.-Y. Li, “Innovation and challenges of artificial intelligence technology in personalized healthcare,” Sci. Rep., vol. 14, no. 1, p. 18994, 2024, doi: 10.1038/s41598-024-70073-7.

[47] M. Ghanem, A. K. Ghaith, and M. Bydon, “Chapter 6 - Artificial intelligence and personalized medicine: transforming patient care,” in The New Era of Precision Medicine, M. Bydon, Ed., Academic Press, 2024, pp. 131–142. doi: https://doi.org/10.1016/B978-0-443-13963-5.00012-1.

[48] S. Quazi, “Artificial intelligence and machine learning in precision and genomic medicine,” Med. Oncol., vol. 39, no. 8, p. 120, 2022, doi: 10.1007/s12032-022-01711-1.

[49] M. S. Nawaz, P. Fournier-Viger, A. Shojaee, and H. Fujita, “Using artificial intelligence techniques for COVID-19 genome analysis,” Appl. Intell., vol. 51, no. 5, pp. 3086–3103, 2021, doi: 10.1007/s10489-021-02193-w.

[50] Y. A. Abass and S. A. Adeshina, “Deep Learning Methodologies for Genomic Data Prediction: Review,” J. Artif. Intell. Med. Sci., vol. 2, no. 1, pp. 1–11, 2021, doi: 10.2991/jaims.d.210512.001.

[51] S. Yang and S. Kar, “Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity,” Artif. Intell. Chem., vol. 1, no. 2, p. 100011, 2023, doi: https://doi.org/10.1016/j.aichem.2023.100011.

[52] A. Anwar, S. Rana, and P. Pathak, “Artificial intelligence in the management of metabolic disorders: a comprehensive review,” J. Endocrinol. Invest., 2025, doi: 10.1007/s40618-025-02548-x.

[53] Z. Guan et al., “Artificial intelligence in diabetes management: Advancements, opportunities, and challenges,” Cell Reports Med., vol. 4, no. 10, Oct. 2023, doi: 10.1016/j.xcrm.2023.101213.

[54] M. A. Makroum, M. Adda, A. Bouzouane, and H. Ibrahim, “Machine Learning and Smart Devices for Diabetes Management: Systematic Review,” Sensors, vol. 22, no. 5, 2022, doi: 10.3390/s22051843.

[55] M. M. Rashid, M. R. Askari, C. Chen, Y. Liang, K. Shu, and A. Cinar, “Artificial Intelligence Algorithms for Treatment of Diabetes,” Algorithms, vol. 15, no. 9, 2022, doi: 10.3390/a15090299.

[56] J. Maharjan et al., “Machine learning determination of applied behavioral analysis treatment plan type,” Brain Informatics, vol. 10, no. 1, p. 7, 2023, doi: 10.1186/s40708-023-00186-8.

[57] D. Niraula et al., “Intricacies of human–AI interaction in dynamic decision-making for precision oncology,” Nat. Commun., vol. 16, no. 1, p. 1138, 2025, doi: 10.1038/s41467-024-55259-x.

[58] S. A. Alowais et al., “Revolutionizing healthcare: the role of artificial intelligence in clinical practice,” BMC Med. Educ., vol. 23, no. 1, p. 689, 2023, doi: 10.1186/s12909-023-04698-z.

[59] N. S. Gupta and P. Kumar, “Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine,” Comput. Biol. Med., vol. 162, p. 107051, 2023, doi: https://doi.org/10.1016/j.compbiomed.2023.107051.

[60] M. M. van Buchem, O. M. Neve, I. M. J. Kant, E. W. Steyerberg, H. Boosman, and E. F. Hensen, “Analyzing patient experiences using natural language processing: development and validation of the artificial intelligence patient reported experience measure (AI-PREM),” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 183, 2022, doi: 10.1186/s12911-022-01923-5.

[61] D. B. Olawade, A. C. David-Olawade, O. Z. Wada, A. J. Asaolu, T. Adereni, and J. Ling, “Artificial intelligence in healthcare delivery: Prospects and pitfalls,” J. Med. Surgery, Public Heal., vol. 3, p. 100108, 2024, doi: https://doi.org/10.1016/j.glmedi.2024.100108.

[62] C. Mennella, U. Maniscalco, G. De Pietro, and M. Esposito, “Ethical and regulatory challenges of AI technologies in healthcare: A narrative review,” Heliyon, vol. 10, no. 4, Feb. 2024, doi: 10.1016/j.heliyon.2024.e26297.

[63] G. Karimian, E. Petelos, and S. M. A. A. Evers, “The ethical issues of the application of artificial intelligence in healthcare: a systematic scoping review,” AI Ethics, vol. 2, no. 4, pp. 539–551, 2022, doi: 10.1007/s43681-021-00131-7.

[64] P. Esmaeilzadeh, “Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations,” Artif. Intell. Med., vol. 151, p. 102861, 2024, doi: https://doi.org/10.1016/j.artmed.2024.102861.

[65] W. Liang et al., “Advances, challenges and opportunities in creating data for trustworthy AI,” Nat. Mach. Intell., vol. 4, no. 8, pp. 669–677, 2022, doi: 10.1038/s42256-022-00516-1.

[66] S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, “Data collection and quality challenges in deep learning: a data-centric AI perspective,” VLDB J., vol. 32, no. 4, pp. 791–813, 2023, doi: 10.1007/s00778-022-00775-9.

[67] S. M. and V. K. Chattu, “A Review of Artificial Intelligence, Big Data, and Blockchain Technology Applications in Medicine and Global Health,” Big Data Cogn. Comput., vol. 5, no. 3, 2021, doi: 10.3390/bdcc5030041.

[68] S. Chakraborty, G. Sharma, S. Karmakar, and S. Banerjee, “Multi-OMICS approaches in cancer biology: New era in cancer therapy,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1870, no. 5, p. 167120, 2024, doi: https://doi.org/10.1016/j.bbadis.2024.167120.

[69] N. Norori, Q. Hu, F. M. Aellen, F. D. Faraci, and A. Tzovara, “Addressing bias in big data and AI for health care: A call for open science,” Patterns, vol. 2, no. 10, Oct. 2021, doi: 10.1016/j.patter.2021.100347.

[70] L. Seyyed-Kalantari, H. Zhang, M. B. A. McDermott, I. Y. Chen, and M. Ghassemi, “Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations,” Nat. Med., vol. 27, no. 12, pp. 2176–2182, 2021, doi: 10.1038/s41591-021-01595-0.

[71] L. A. Jawad, “Security and Privacy in Digital Healthcare Systems: Challenges and Mitigation Strategies,” Abhigyan, vol. 42, no. 1, pp. 23–31, 2024, doi: 10.1177/09702385241233073.

[72] N. Díaz-Rodríguez, J. Del Ser, M. Coeckelbergh, M. López de Prado, E. Herrera-Viedma, and F. Herrera, “Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation,” Inf. Fusion, vol. 99, p. 101896, 2023, doi: 10.1016/j.inffus.2023.101896.

[73] M. Y. Jabarulla and H.-N. Lee, “A Blockchain and Artificial Intelligence-Based, Patient-Centric Healthcare System for Combating the COVID-19 Pandemic: Opportunities and Applications,” Healthcare, vol. 9, no. 8, 2021, doi: 10.3390/healthcare9081019.

[74] M. C. Chibuike, S. S. Grobbelaar, and A. Botha, “Overcoming Challenges for Improved Patient-Centric Care: A Scoping Review of Platform Ecosystems in Healthcare,” IEEE Access, vol. 12, pp. 14298–14313, 2024, doi: 10.1109/ACCESS.2024.3356860.

[75] T. O. C. E. Yahya Layth Khaleel, Mustafa Abdulfattah Habeeb, “Limitations of Deep Learning vs. Human Intelligence: Training Data, Interpretability, Bias, and Ethics,” Appl. Data Sci. Anal., vol. 2025, pp. 3–6, 2025, doi: 10.58496/ADSA/2025/002.

[76] H. Shamszare and A. Choudhury, “Clinicians’ Perceptions of Artificial Intelligence: Focus on Workload, Risk, Trust, Clinical Decision Making, and Clinical Integration,” Healthcare, vol. 11, no. 16, 2023, doi: 10.3390/healthcare11162308.

[77] T. Hulsen, “Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare,” AI, vol. 4, no. 3, pp. 652–666, 2023, doi: 10.3390/ai4030034.

[78] Y. L. Khaleel, M. A. Habeeb, A. S. Albahri, T. Al-Quraishi, O. S. Albahri, and A. H. Alamoodi, “Network and cybersecurity applications of defense in adversarial attacks: A state-of-the-art using machine learning and deep learning methods,” J. Intell. Syst., vol. 33, no. 1, 2024, doi: 10.1515/jisys-2024-0153.

[79] M. A. Habeeb and Y. L. Khaleel, “Enhanced Android Malware Detection through Artificial Neural Networks Technique,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 1 SE-Articles. pp. 62–77. doi: 10.58496/MJCS/2025/005.

[80] Y. L. Khaleel, H. M. Abdulfattah, and H. Alnabulsi, “Adversarial Attacks in Machine Learning: Key Insights and Defense Approaches,” Appl. Data Sci. Anal., vol. 2024, pp. 121–147, 2024, doi: 10.58496/ADSA/2024/011.

[81] G. G. Shayea, M. H. M. Zabil, M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Strategies for protection against adversarial attacks in AI models: An in-depth review,” J. Intell. Syst., vol. 34, no. 1, p. 20240277, 2025, doi: 10.1515/jisys-2024-0277.

[82] M. Mohsin Khan, N. Shah, N. Shaikh, A. Thabet, T. alrabayah, and S. Belkhair, “Towards secure and trusted AI in healthcare: A systematic review of emerging innovations and ethical challenges,” Int. J. Med. Inform., vol. 195, p. 105780, 2025, doi: https://doi.org/10.1016/j.ijmedinf.2024.105780.

[83] S. Nasir, R. A. Khan, and S. Bai, “Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond,” IEEE Access, vol. 12, pp. 31014–31035, 2024, doi: 10.1109/ACCESS.2024.3369912.

[84] A. Akingbola, O. Adeleke, A. Idris, O. Adewole, and A. Adegbesan, “Artificial Intelligence and the Dehumanization of Patient Care,” J. Med. Surgery, Public Heal., vol. 3, p. 100138, 2024, doi: https://doi.org/10.1016/j.glmedi.2024.100138.

[85] S. S. Hasan, M. S. Fury, J. J. Woo, K. N. Kunze, and P. N. Ramkumar, “Ethical Application of Generative Artificial Intelligence in Medicine,” Arthrosc. J. Arthrosc. Relat. Surg., vol. 41, no. 4, pp. 874–885, 2025, doi: https://doi.org/10.1016/j.arthro.2024.12.011.

[86] C. Sitaula and T. B. Shahi, “Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches,” J. Med. Syst., vol. 46, no. 11, 2022, doi: 10.1007/s10916-022-01868-2.

[87] M. M. Eid et al., “Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases,” Mathematics, vol. 10, no. 20, 2022, doi: 10.3390/math10203845.

[88] S. N. Ali et al., “Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study,” 2022, doi: https://doi.org/10.48550/arXiv.2207.03342.

[89] M. Qureshi et al., “Modeling and Forecasting Monkeypox Cases Using Stochastic Models,” J. Clin. Med., vol. 11, no. 21, p. 6555, Nov. 2022, doi: 10.3390/jcm11216555.

[90] O. Iparraguirre-Villanueva et al., “The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model,” Vaccines, vol. 11, no. 2, p. 312, Jan. 2023, doi: 10.3390/vaccines11020312.

[91] Rajat Kumar, “Monkeypox Global Case Records,” Kaggle, 2024.

[92] M. A. Habeeb, “Hate Speech Detection using Deep Learning Master thesis,” University of Miskolc, 2021. [Online]. Available: http://midra.uni-miskolc.hu/document/40792/38399.pdf

[93] Y. L. Khaleel, “Fake News Detection Using Deep Learning,” University of Miskolc, 2021. doi: http://dx.doi.org/10.13140/RG.2.2.31151.75689.

[94] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson Correlation Coefficient,” 2009, pp. 1–4. doi: 10.1007/978-3-642-00296-0_5.

[95] F. M. Ottaviani and A. De Marco, “Multiple Linear Regression Model for Improved Project Cost Forecasting,” Procedia Comput. Sci., vol. 196, pp. 808–815, 2022, doi: 10.1016/j.procs.2021.12.079.

[96] A. A. Mahamat et al., “Decision Tree Regression vs. Gradient Boosting Regressor Models for the Prediction of Hygroscopic Properties of Borassus Fruit Fiber,” Appl. Sci., vol. 14, no. 17, p. 7540, Aug. 2024, doi: 10.3390/app14177540.

[97] Y. O. Ouma et al., “Land-Use Change Prediction in Dam Catchment Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus,” Sustainability, vol. 16, no. 4, p. 1699, Feb. 2024, doi: 10.3390/su16041699.

[98] G. Lin, A. Lin, and D. Gu, “Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient,” Inf. Sci. (Ny)., vol. 608, pp. 517–531, Aug. 2022, doi: 10.1016/j.ins.2022.06.090.

[99] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.

[100] S. Dadvandipour and Y. L. Khaleel, “Application of deep learning algorithms detecting fake and correct textual or verbal news,” Prod. Syst. Inf. Eng., vol. 10, no. 2, pp. 37–51, 2022, doi: 10.32968/psaie.2022.2.4.

[101] P. A. Dowd, “Accuracy and Precision,” in Encyclopedia of Mathematical Geosciences, B. S. Daya Sagar, Q. Cheng, J. McKinley, and F. Agterberg, Eds., Cham: Springer International Publishing, 2023, pp. 1–4. doi: 10.1007/978-3-030-85040-1_432.

[102] I. M. De Diego, A. R. Redondo, R. R. Fernández, J. Navarro, and J. M. Moguerza, “General Performance Score for classification problems,” Appl. Intell., vol. 52, no. 10, pp. 12049–12063, 2022, doi: 10.1007/s10489-021-03041-7.

[103] F. S. Nahm, “Receiver operating characteristic curve: overview and practical use for clinicians,” kja, vol. 75, no. 1, pp. 25–36, Jan. 2022, doi: 10.4097/kja.21209.

Similar Articles

You may also start an advanced similarity search for this article.