Arcsine Ratio Sine Generalized Distributions with Applications to Biomedical and Engineering Data

Main Article Content

Kizito E. Anyiam
Mohamed A. F. Elbarkawy
Ehab M. Almetwally
Okechukwu J. Obulezi
Mohammed Elgarhy

Abstract

 Trigonometric distributions offer a powerful approach to solving complex problems in probability and statistical modeling. In this study, we introduce a novel class of distributions: the Arcsine Ratio Sine Generalized (ARS-G) family. We provide a complete set of explicit formulas for the family’s statistical properties. Our key illustration is the ARS-Weibull (ARS-W) distribution, which uses the Weibull model as its foundation. This particular model demonstrates remarkable flexibility, with its hazard function capable of assuming diverse shapes, including bump, bathtub, reversed bathtub, J-shaped, and L-shaped profiles. We thoroughly examine the ARSW distribution’s statistical properties and employ various established estimation methods to determine its parameters. Through rigorous Monte Carlo simulations, we confirm the consistency and stability of these estimation methods. We then showcase the ARS-W model’s practical value by applying it to three real-world lifetime datasets: guinea pig survival times, active repair times for a communication transceiver, and turbocharger failure times. The model not only provides robust parameter estimates and a strong goodness-of-fit for the right-skewed guinea pig and transceiver data, but also outperforms traditional distributions (Weibull, Gumbel, Gamma, and Lognormal) for the left-skewed turbocharger dataset 


 


 

Article Details

Section

Articles

How to Cite

Anyiam, K. E. ., Elbarkawy, M. A. F. ., Almetwally, E. M. ., Obulezi, O. J. ., & Elgarhy, M. . (2025). Arcsine Ratio Sine Generalized Distributions with Applications to Biomedical and Engineering Data. Mesopotamian Journal of CyberSecurity, 5(3), 1218-1271. https://doi.org/10.58496/MJCS/2025/065

References

[1] M Shrahili, I Elbatal, and Mohammed Elgarhy. “Sine Half-Logistic Inverse Rayleigh Distribution: Properties, Estimation, and Applications in

Biomedical Data”. In: Journal of Mathematics 2021.1 (2021), page 4220479. url: https://doi.org/10.1155/2021/4220479.

[2] Anwar Hassan, Murtiza Ali Lone, Ishfaq Hassain Dar, and Peer Bilal Ahmad. “A new continuous probability model based on a trigonometric

function: Theory and applications”. In: Reliability: Theory & Applications 17.3 (69) (2022), pages 261–272. url: https://cyberleninka.

ru/article/n/a-new-continuous-probability-model-based-on-a-trigonometric-function-theory-and-applications.

[3] Luciano Souza, Wilson Junior, Cicero De Brito, Christophe Chesneau, Tiago Ferreira, and Lucas Soares. “On the Sin-G class of distributions:

theory, model and application”. In: Journal of Mathematical Modeling 7.3 (2019), pages 357–379. url: https://doi.org/10.22124/jmm.

2019.13502.1278.

[4] Zafar Mahmood, Christophe Chesneau, and Muhammad Hussain Tahir. “A new sine-G family of distributions: properties and applications”. In:

Bull. Comput. Appl. Math. 7.1 (2019), pages 53–81. url: https://hal.science/hal-03580871/.

[5] Abdisalam Hassan Muse, Amani Almohaimeed, Hana N Alqifari, and Christophe Chesneau. “Sine-G family of distributions in Bayesian survival

modeling: A baseline hazard approach for proportional hazard regression with application to right-censored oncology datasets using R and

STAN”. In: PloS one 20.3 (2025), e0307410.

[6] Laxmi Prasad Sapkota, Pankaj Kumar, and Vijay Kumar. “A New Class of Sin-G Family of Distributions with Applications to Medical Data”.

In: Reliability: Theory & Applications 18.3 (74) (2023), pages 734–750. url: https://cyberleninka.ru/article/n/a-new-class-ofsin-g-family-of-distributions-with-applications-to-medical-data.

[7] Omalsad Hamood Odhah, Huda M Alshanbari, Zubair Ahmad, Faridoon Khan, and Abd al-Aziz Hosni El-Bagoury. “A new family of distributions using a trigonometric function: Properties and applications in the healthcare sector”. In: Heliyon 10.9 (2024). url: https://doi.org/

10.1016/j.heliyon.2024.e29861.

[8] Aijaz Ahmad, Aafaq A Rather, Ahmed M Gemeay, M Nagy, Laxmi Prasad Sapkota, and AH Mansi. “Novel sin-G class of distributions with an

illustration of Lomax distribution: Properties and data analysis”. In: AIP Advances 14.3 (2024). url: https://doi.org/10.1063/5.0180263.

[9] AM Isa, SI Doguwa, BB Alhaji, and HG Dikko. “Sine-Topp-Leone exponentiated-G Family of Distribution: Properties, Survival Regression and

Application”. In: Reliability: Theory & Applications 19.3 (79) (2024), pages 157–172. url: https://cyberleninka.ru/article/n/sinetopp-leone-exponentiated-g-family-of-distributions-properties-survival-regression-and-application.

[10] Laxmi Prasad Sapkota, Pankaj Kumar, Vijay Kumar, Yusra A Tashkandy, ME Bakr, Oluwafemi Samson Balogun, Getachew Tekle Mekiso,

and Ahmed M Gemeay. “Sine π-power odd-G family of distributions with applications”. In: Scientific Reports 14.1 (2024), page 19481. url:

https://doi.org/10.1038/s41598-024-69567-1.

[11] Yusra A Tashkandy, M Nagy, Muhammad Akbar, Zafar Mahmood, Ahmed M Gemeay, Md Moyazzem Hossain, and Abdisalam Hassan Muse.

“The exponentiated cotangent generalized distributions: Characteristics and applications patients of chemotherapy treatments data”. In: IEEE

Access 11 (2023), pages 35697–35709. url: https://doi.org/10.1109/ACCESS.2023.3256525.

[12] Mohammed Ahmed Alomair, Zubair Ahmad, Gadde Srinivasa Rao, Hazem Al-Mofleh, Saima Khan Khosa, and Abdulaziz Saud Al Naim. “A

new trigonometric modification of the Weibull distribution: Control chart and applications in quality control”. In: Plos one 18.7 (2023), e0286593.

url: https://doi.org/10.1371/journal.pone.0286593.1266

[13] Aijaz Ahmad, Aafaq A Rather, Ohud A Alqasem, ME Bakr, Getachew Tekle Mekiso, Oluwafemi Samson Balogun, Eslam Hussam, and Ahmed

M Gemeay. “Introducing novel arc cosine-class of distribution with theory and data evaluation related to coronavirus”. In: Scientific Reports 15.1

(2025), page 13069.

[14] Pankaj Kumar, Laxmi Prasad Sapkota, and Vijay Kumar. “A NEW CLASS OF COS-G FAMILY OF DISTRIBUTIONS WITH APPLICATIONS”. In: Reliability: Theory & Applications 20.1 (82) (2025), pages 105–123.

[15] Christophe Chesneau. “A Proposal of New Extended Symmetric Cosine Distribution”. In: European Journal of Mathematical Analysis 5 (2025),

pages 7–7.

[16] Christophe Chesneau, Hassan S Bakouch, and Tassaddaq Hussain. “A new class of probability distributions via cosine and sine functions with

applications”. In: Communications in Statistics-Simulation and Computation 48.8 (2019), pages 2287–2300. url: https://doi.org/10.

1080/03610918.2018.1440303.

[17] Mustapha Muhammad, Rashad AR Bantan, Lixia Liu, Christophe Chesneau, Muhammad H Tahir, Farrukh Jamal, and Mohammed Elgarhy. “A

new extended cosine—G distributions for lifetime studies”. In: Mathematics 9.21 (2021), page 2758. url: https://doi.org/10.3390/

math9212758.

[18] Zafar Mahmood, Taghreed M Jawa, Neveen Sayed-Ahmed, EM Khalil, Abdisalam Hassan Muse, and Ahlam H Tolba. “An extended cosine

generalized family of distributions for reliability modeling: Characteristics and applications with simulation study”. In: Mathematical Problems

in Engineering 2022.1 (2022), page 3634698. url: https://doi.org/10.1155/2022/3634698.

[19] Pankaj Kumar, Laxmi Prasad Sapkota, Vijay Kumar, Yusra A Tashkandy, ME Bakr, Oluwafemi Samson Balogun, and Ahmed M Gemeay. “A

new class of cosine trigonometric lifetime distribution with applications”. In: Alexandria Engineering Journal 106 (2024), pages 664–674. url:

https://doi.org/10.1016/j.aej.2024.08.016.

[20] Luciano Souza, Wilson Rosa de O Junior, Cicero Carlos R de Brito, Tiago AE Ferreira, Lucas GM Soares, et al. “General properties for the

Cos-G class of distributions with applications”. In: Eurasian Bulletin of Mathematics (ISSN: 2687-5632) (2019), pages 63–79.

[21] Meshayil Meshal Alsolmi. “A New Logarithmic Tangent-U Family of Distributions with Reliability Analysis in Engineering Data”. In: Computational Journal of Mathematical and Statistical Sciences 4.1 (2025), pages 258–282.

[22] Luciano Souza. “New trigonometric classes of probabilistic distributions”. In: Estado de Pernambuco-Brasil (2015). url: https://bdtd.

ibict.br/vufind/Record/URPE_3c337e66b50908ba430301de7ec47be2.

[23] Luciano Souza, Wilson Rosa de O Júnior, Cícero Carlos R de Brito, Christophe Chesneau, Renan L Fernandes, and Tiago AE Ferreira. “Tan-G

class of trigonometric distributions and its applications”. In: Cubo (Temuco) 23.1 (2021), pages 1–20. url: http://dx.doi.org/10.4067/

S0719-06462021000100001.

[24] WA Hassanein and TA Elhaddad. “Simulating phenomena with exponentiated trigonometric distributions: a comparative study of estimation

methods and real-world applications”. In: Stochastic Environmental Research and Risk Assessment 38.2 (2024), pages 777–792. url: https:

//doi.org/10.1007/s00477-023-02601-2.

[25] Laxmi Prasad Sapkota, Arwa M Alsahangiti, Vijay Kumar, Ahmed M Gemeay, Mahmoud E Bakr, Oluwafemi Samson Balogun, and Abdisalam

Hassan Muse. “Arc-tangent exponential distribution with applications to weather and chemical data under classical and Bayesian approach”. In:

IEEE Access (2023). url: https://doi.org/10.1109/ACCESS.2023.3324293.

[26] Simon A Ogumeyo, Festus C Opone, Abdul Ghaniyyu Abubakari, and Jacob C Ehiwario. “A Bounded Lifetime Distribution Specified by a

Trigonometric Function: Properties, Regression Model, and Applications”. In: International Journal of Mathematics and Mathematical Sciences

2024.1 (2024), page 5583105. url: https://doi.org/10.1155/2024/5583105.

[27] Mahmoud M Elsehetry, Ahmed W Shawki, Mohamed G Khalil, and Tamer S Helal. “On Fitting Renewable Energy Sources Data: Using a

New Trigonometric Statistical Model”. In: Computational Journal of Mathematical and Statistical Sciences 3.2 (2024), pages 389–417. url:

https://doi.org/10.21608/cjmss.2024.297407.1056.

[28] Omalsad Hamood Odhah, Olayan Albalawi, and Huda M Alshanbari. “A new trigonometric-oriented distributional method: Model, theory, and

practical applications”. In: Alexandria Engineering Journal 120 (2025), pages 1–12.

[29] Wenjing He, Zubair Ahmad, Ahmed Z Afify, and Hafida Goual. “The Arcsine Exponentiated-X Family: Validation and Insurance Application”.

In: Complexity 2020.1 (2020), page 8394815. url: https://doi.org/10.1155/2020/8394815.

[30] Aijaz Ahmad, Najwan Alsadat, Mintode^ Nicodeme Atchade, S Qurat ul Ain, Ahmed M Gemeay, Mohammed Amine Meraou, Ehab M

Almetwally, Md Moyazzem Hossain, and Eslam Hussam. “New hyperbolic sine-generator with an example of Rayleigh distribution: Simulation

and data analysis in industry”. In: Alexandria Engineering Journal 73 (2023), pages 415–426. url: https://doi.org/10.1016/j.aej.

2023.04.048.

[31] Aijaz Ahmad, Fatimah M Alghamdi, Afaq Ahmad, Olayan Albalawi, Abdullah A Zaagan, Mohammed Zakarya, Ehab M Almetwally, and

Getachew Tekle Mekiso. “New Arctan-generator family of distributions with an example of Frechet distribution: Simulation and analysis to

strength of glass and carbon fiber data”. In: Alexandria Engineering Journal 100 (2024), pages 42–52. url: https://doi.org/10.1016/j.

aej.2024.05.021.

[32] Chinyere P Okechukwu, Emmanuel Chibuogu Asogwa, Obioma Chukwudi Aguwa, Okechukwu J Obulezi, and Mohamed R Ezzeldin. “Prediction of gender power dynamics and political representation in Nigeria using machine learning models”. In: Innovation in Computer and Data

Sciences 1.1 (2025), pages 1–18. doi: ttps://doi.org/10.64389/icds.2025.01122.

[33] Emmanuel Chibuogu Asogwa, Mmesoma P Nwankwo, Emmanuel E Oguadimma, Chinyere P Okechukwu, and Ahmad Abubakar Suleiman.

“Hybrid LSTM-CNN deep learning framework for stock price prediction with google stock and reddit sentiment data”. In: Innovation in

Computer and Data Sciences 1.1 (2025), pages 32–50. doi: https://doi.org/10.64389/icds.2025.01126.

[34] Chrisogonus K Onyekwere, Chinedu K Nwankwo, John Abonongo, Emmanuel Chibuogu Asogwa, and Anum Shafiq. “Economic growth

dynamics: a machine learning-augmented nonlinear autoregressive distributed lag model of asymmetric effect”. In: Innovation in Computer

and Data Sciences 1.1 (2025), pages 19–31. doi: https://doi.org/10.64389/icds.2025.01125.1267

[35] Kingsley Nnaekwe, Eucharia Ani, Victory Obieke, Chinyere Okechukwu, Abdullahi Usman, and Mahmod Othman. “Forecasting seasonal

rainfall with time series, machine learning and deep learning”. In: Innovation in Computer and Data Sciences 1.1 (2025), pages 51–65. doi:

https://doi.org/10.64389/icds.2025.01127.

[36] Gideon Ugbor, Farrukh Jamal, Sadaf Khan, and Ahmed W Shawki. “Generative AI for drug discovery: Accelerating molecular design with deep

learning using Nigerian local content”. In: Innovation in Computer and Data Sciences 1.1 (2025), pages 66–77. doi: https://doi.org/10.

64389/icds.2025.01128.

[37] J.J. Swain, S. Venkatraman, and J.R. Wilson. “Least-squares estimation of distribution functions in Johnson’s translation system”. In: Journal of

Statistical Computation and Simulation 29.4 (1988), pages 271–297.

[38] H.R. Varian. “A Bayesian approach to real estate assessment”. In: Studies in Bayesian econometrics and statistics in honor of Leonard J. Savage.

North-Holland, 1975.

[39] M. Doostparast, M.G. Akbari, and N. Balakrishna. “Bayesian analysis for the two-parameter Pareto distribution based on record values and

times”. In: Journal of Statistical Computation and Simulation 81.11 (2011), pages 1393–1403.

[40] R. Calabria and G. Pulcini. “Point estimation under asymmetric loss functions for left-truncated exponential samples”. In: Communications in

Statistics-Theory and Methods 25.3 (1996), pages 585–600.

[41] S. Brooks. “Markov chain Monte Carlo method and its application”. In: Journal of the royal statistical society: series D (the Statistician) 47.1

(1998), pages 69–100.

[42] Christophe Chesneau. “Theory on a new bivariate trigonometric Gaussian distribution”. In: Innovation in Statistics and Probability 1.2 (2025),

pages 1–17. doi: 10.64389/isp.2025.01223.

[43] Moustafa N. Mousa, M. E. Moshref, N. Youns, and M. M. M. Mansour. “Inference under Hybrid Censoring for the Quadratic Hazard Rate

Model: Simulation and Applications to COVID-19 Mortality”. In: Modern Journal of Statistics 2.1 (2025), pages 1–31. doi: 10.64389/mjs.

2026.02113.

[44] Ibrahim Ragab and Mohammed Elgarhy. “Type II half logistic Ailamujia distribution with numerical illustrations to medical data”. In: Computational Journal of Mathematical and Statistical Sciences 4.2 (2025), pages 379–406. issn: 2974-3435. doi: 10.21608/cjmss.2025.346849.

1095.

[45] Gabriel O. Orji, Harrison O. Etaga, Ehab M. Almetwally, Chinyere P. Igbokwe, Obioma Chukwudi Aguwa, and Okechukwu J. Obulezi. “A New

Odd Reparameterized Exponential Transformed-X Family of Distributions with Applications to Public Health Data”. In: Innovation in Statistics

and Probability 1.1 (2025), pages 88–118. doi: 10.64389/isp.2025.01107.

[46] Ahmed M. Gemeay, Thatayaone Moakofi, Oluwafemi Samson Balogun, Egemen Ozkan, and Md. Moyazzem Hossain. “Analyzing Real Data

by a New Heavy-Tailed Statistical Model”. In: Modern Journal of Statistics 1.1 (2025), pages 1–24. doi: 10.64389/mjs.2025.01108. url:

https://sphinxsp.org/journal/index.php/mjs/article/view/8.

[47] Amal Hassan, Diaa S. Metwally, Mohammed Elgarhy, and Ahmed M. Gemeay. “A new probability continuous distribution with different

estimation methods and application”. In: Computational Journal of Mathematical and Statistical Sciences 4.2 (2025), pages 512–532. issn:

2974-3435.

[48] Okechukwu Jeremiah Obulezi. “Obulezi distribution: a novel one-parameter distribution for lifetime data modeling”. In: Modern Journal of

Statistics 2.1 (2026), pages 32–74. doi: https://doi.org/10.64389/mjs.2026.02140.

[49] Ayman Alzaatreh, Carl Lee, and Felix Famoye. “A new method for generating families of continuous distributions”. In: Metron 71.1 (2013),

pages 63–79. doi: https://doi.org/10.1007/s40300-013-0007-y.

[50] Izrail S Gradshteyn, Iosif M Ryzhik, and Robert H Romer. Tables of integrals, series, and products. 1988. url: https://doi.org/10.1119/

1.15756.

[51] Waloddi Weibull. “A statistical distribution function of wide applicability”. In: J. Appl. Mech. (1951).

[52] Chin-Diew Lai, DN Murthy, and Min Xie. “Weibull distributions and their applications”. In: Springer Handbooks. Springer, 2006, pages 63–78.

url: https://doi.org/10.1007/978-1-84628-288-1_3.

[53] Ashis SenGupta, Hemangi V Kulkarni, and Uttam D Hubale. “Prediction intervals for environmental events based on Weibull distribution”. In:

Environmental and Ecological Statistics 22.1 (2015), pages 87–104. url: https://doi.org/10.1007/s10651-014-0286-3.

[54] Qila Sa, Xingji Jin, Timo Pukkala, and Fengri Li. “Developing Weibull-based diameter distributions for the major coniferous species in Heilongjiang Province, China”. In: Journal of Forestry Research 34.6 (2023), pages 1803–1815. url: https://doi.org/10.1007/s11676-023-

01610-9.

[55] Jinbo Du, Haowei Zhang, Han Wang, Yapeng Yang, Yuedong Xie, and Yunbo Bi. “Weibull distribution-based prediction model for compression

after impact (CAI) strength of CFRP laminates”. In: Materials Today Communications 35 (2023), page 105756. url: https://doi.org/10.

1016/j.mtcomm.2023.105756.

[56] Yolanda M Gómez, Diego I Gallardo, Carolina Marchant, Luis Sánchez, and Marcelo Bourguignon. “An in-depth review of the Weibull model

with a focus on various parameterizations”. In: Mathematics 12.1 (2023), page 56. url: https://doi.org/10.3390/math12010056.

[57] Ze Li, Weihong Zhou, Fatimah A Almulhim, Jin-Taek Seong, Manahil Sid Ahmed Mustafa, and Hassan M Aljohani. “The implications of

LinkedIn medium and Weibull-based probability model in the financial sector”. In: Alexandria Engineering Journal 95 (2024), pages 174–188.

url: https://doi.org/10.1016/j.aej.2024.03.073.

[58] Ronald A Fisher. “On an absolute criterion for fitting frequency curves”. In: Messenger of mathematics 41 (1912), pages 155–156.

[59] Ronald A Fisher. “On the mathematical foundations of theoretical statistics”. In: Philosophical transactions of the Royal Society of London.

Series A, containing papers of a mathematical or physical character 222.594-604 (1922), pages 309–368. doi: https://doi.org/10.1098/

rsta.1922.0009.1268

[60] Theodore W Anderson and Donald A Darling. “Asymptotic theory of certain" goodness of fit" criteria based on stochastic processes”. In: The

annals of mathematical statistics (1952), pages 193–212. url: https://www.jstor.org/stable/2236446.

[61] Theodore W Anderson and Donald A Darling. “A test of goodness of fit”. In: Journal of the American statistical association 49.268 (1954),

pages 765–769. doi: https://doi.org/10.1080/01621459.1954.10501232.

[62] K. Choi and W. G. Bulgren. “An estimation procedure for mixtures of distributions”. In: Journal of the Royal Statistical Society: Series B

(Methodological) 30.3 (1968), pages 444–460. doi: https://doi.org/10.1111/j.2517-6161.1968.tb00743.x.

[63] Abdus Saboor, Farrukh Jamal, Shakaiba Shafq, and Rabia Mumtaz. “On the Versatility of the Unit Logistic Exponential Distribution: CapturingBathtub, Upside-Down Bathtub, and Monotonic Hazard Rates”. In: Innovation in Statistics and Probability 1.1 (June 2025), pages 28–46. doi:

10.64389/isp.2025.01102. url: https://sphinxsp.org/journal/index.php/isp/article/view/2.

[64] Potluri S S Swetha and Vasili Nagarjuna. “Topp-Leone modified Kies-G family of distributions: Properties, actuarial measures, inference and

applications”. In: Computational Journal of Mathematical and Statistical Sciences 4.2 (2025), pages 697–737. issn: 2974-3435. doi: 10.21608/

cjmss.2025.418412.1253.

[65] James J Swain, Sekhar Venkatraman, and James R Wilson. “Least-squares estimation of distribution functions in Johnson’s translation system”.

In: Journal of Statistical Computation and Simulation 29.4 (1988), pages 271–297. url: https://doi.org/10.1080/00949658808811068.

[66] Chrisogonus K. Onyekwere, Obioma Chukwudi Aguwa, and Okechukwu J. Obulezi. “An Updated Lindley Distribution: Properties, Estimation,

Acceptance Sampling, Actuarial Risk Assessment and Applications”. In: Innovation in Statistics and Probability 1.1 (June 2025), pages 1–27.

doi: 10.64389/isp.2025.01103. url: https://sphinxsp.org/journal/index.php/isp/article/view/3.

[67] Ahmed M. Gemeay, Thatayaone Moakofi, Oluwafemi Samson Balogun, Egemen Ozkan, and Md. Moyazzem Hossain. “Analyzing Real Data by

a New Heavy-Tailed Statistical Model”. In: Modern Journal of Statistics 1.1 (July 2025), pages 1–24. doi: 10.64389/mjs.2025.01108. url:

https://sphinxsp.org/journal/index.php/mjs/article/view/8.

[68] M. S. Mukhtar, M. El-Morshedy, M. S. Eliwa, and H. M. Yousof. “Expanded Fréchet model: mathematical properties, copula, different estimation

methods, applications and validation testing”. In: Mathematics 8.11 (2020), page 1949. doi: https://doi.org/10.3390/math8111949.

[69] Guilherme AS Aguilar, Fernando A Moala, and Gauss M Cordeiro. “Zero-truncated poisson exponentiated gamma distribution: Application and

estimation methods”. In: Journal of Statistical Theory and Practice 13 (2019), pages 1–20. doi: https://doi.org/10.1007/s42519-019-

0059-2.

[70] Amal Hassan, Diaa S. Metwally, Mohammed Elgarhy, and Ahmed M. Gemeay. “A new probability continuous distribution with different estimation methods and application”. In: Computational Journal of Mathematical and Statistical Sciences 4.2 (2025), pages 512–532. issn: 2974-3435.

doi: 10.21608/cjmss.2025.375970.1157. eprint: https://cjmss.journals.ekb.eg/article_434409_b631ee537803c0d71beb999e63e69d20.

pdf. url: https://cjmss.journals.ekb.eg/article_434409.html.

[71] J. H. K. Kao. “Computer methods for estimating Weibull parameters in reliability studies”. In: IRE Transactions on Reliability and Quality

Control (1958), pages 15–22. doi: https://doi.org/10.1109/IRE-PGRQC.1958.5007164.

[72] Nooruldeen A. Noori, Kamal Najim Abdullah, and Mundher A. khaleel. “Development and Applications of a New Hybrid Weibull-Inverse

Weibull Distribution”. In: Modern Journal of Statistics 1.1 (July 2025), pages 80–103. doi: 10 . 64389 / mjs . 2025 . 01112. url: https :

//sphinxsp.org/journal/index.php/mjs/article/view/12.

[73] H. Torabi. “A general method for estimating and hypotheses testing using spacings”. In: Journal of Statistical Theory and Applications 8.2

(2008), pages 163–168.

[74] Tor Bjerkedal. “Acquisition of Resistance in Guinea Pies infected with Different Doses of Virulent Tubercle Bacilli.” In: American Journal of

Hygiene 72.1 (1960). url: https://www.cabidigitallibrary.org/doi/full/10.5555/19612700619.

[75] Mustafa S Shama, Amirah Saeed Alharthi, Fatimah A Almulhim, Ahmed M Gemeay, Mohammed Amine Meraou, Manahil SidAhmed Mustafa,

Eslam Hussam, and Hassan M Aljohani. “Modified generalized Weibull distribution: theory and applications”. In: Scientific Reports 13.1 (2023),

page 12828. url: https://doi.org/10.1038/s41598-023-38942-9.

[76] Haitham M Yousof, Ahmed Z Afify, Saralees Nadarajah, Gholamhossein Hamedani, and Gokarna Raj Aryal. “The Marshall-Olkin generalizedG family of distributions with Applications”. In: Statistica 78.3 (2018), pages 273–295. doi: https://doi.org/10.6092/issn.1973-

2201/7662.

[77] Ahmed R El-Saeed, Okechukwu J Obulezi, and MM Abd El-Raouf. “Type II heavy tailed family with applications to engineering, radiation

biology and aviation data”. In: Journal of Radiation Research and Applied Sciences 18.3 (2025), page 101547. doi: https://doi.org/10.

1016/j.jrras.2025.101547.

[78] Kai Xu, Min Xie, Loon Ching Tang, and Siu Lau Ho. “Application of neural networks in forecasting engine systems reliability”. In: Applied Soft

Computing 2.4 (2003), pages 255–268. doi: https://doi.org/10.1016/S1568-4946(02)00059-5.

[79] Mark Bebbington, Chin-Diew Lai, and Ricardas Zitikis. “A flexible Weibull extension”. In: ˇ Reliability Engineering & System Safety 92.6 (2007),

pages 719–726. url: https://doi.org/10.1016/j.ress.2006.03.004.

[80] Emil Julius Gumbel. “The return period of flood flows”. In: The annals of mathematical statistics 12.2 (1941), pages 163–190.

[81] Irving W Burr. “Cumulative frequency functions”. In: The Annals of mathematical statistics 13.2 (1942), pages 215–232. doi: https://www.

jstor.org/stable/2235756.

[82] Zafar Mahmood, Hazar A Khogeer, Eslam Hussam Hafez, and Md Moyazzem Hossain. “A Logistic Trigonometric Generalized Class of

Distribution Characteristics, Applications, and Simulations”. In: Journal of Mathematics 2022.1 (2022), page 7091581. url: https://doi.

org/10.1155/2022/7091581.

Similar Articles

You may also start an advanced similarity search for this article.